【瑞利信道中的16 QAM模拟】将BER图与MATLAB BER TOOL的理论值进行比较研究(Matlab代码实现)

  💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

一、研究背景

二、研究目的

三、研究方法

四、研究结果

五、结论

六、建议与展望

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

一、研究背景

在无线通信系统中,瑞利信道是一种常见的信道模型,它描述了由于多径传播和散射效应导致的信号衰落。16 QAM(16进制正交振幅调制)是一种高效的调制技术,它通过将4位二进制数据映射到16个不同的复数符号上,提高了频谱效率。然而,在瑞利信道中,16 QAM的性能会受到严重的影响,因此对其进行模拟和性能评估至关重要。

二、研究目的

本研究旨在通过模拟瑞利信道中的16 QAM传输,并比较模拟结果与MATLAB BER TOOL提供的理论值,以评估16 QAM在瑞利信道中的性能。

三、研究方法

  1. 瑞利信道模拟

    • 使用MATLAB生成瑞利分布的随机变量,以模拟瑞利信道中的信号衰落。
    • 将生成的瑞利衰落信号应用于16 QAM调制的信号上,以模拟信号在瑞利信道中的传输过程。
  2. 16 QAM调制与解调

    • 使用MATLAB的通信工具箱中的qammod函数进行16 QAM调制。
    • 在接收端,使用qamdemod函数进行解调,并计算误比特率(BER)。
  3. 与MATLAB BER TOOL理论值比较

    • 使用MATLAB BER TOOL获取在相同信噪比(SNR)条件下,16 QAM在瑞利信道中的理论BER值。
    • 将模拟得到的BER值与理论值进行比较,以评估模拟结果的准确性。

四、研究结果

  1. BER性能分析

    • 随着SNR的增加,模拟得到的BER值逐渐降低,这与理论预期一致。
    • 在相同的SNR条件下,模拟得到的BER值略高于理论值,这可能是由于模拟过程中的随机性和噪声的影响。
  2. 模拟结果与理论值的比较

    • 在低SNR条件下,模拟结果与理论值之间的差异较大,这可能是由于噪声和信道衰落对信号的影响更为显著。
    • 随着SNR的增加,模拟结果与理论值之间的差异逐渐减小,这表明在高SNR条件下,模拟结果更加接近理论值。

五、结论

本研究通过模拟瑞利信道中的16 QAM传输,并与MATLAB BER TOOL提供的理论值进行比较,评估了16 QAM在瑞利信道中的性能。研究结果表明,模拟结果与理论值在整体上保持一致,但在低SNR条件下存在一定的差异。这可能是由于模拟过程中的随机性和噪声的影响所致。因此,在实际应用中,需要充分考虑信道衰落和噪声对16 QAM性能的影响,并采取相应的措施来提高系统的鲁棒性和可靠性。

六、建议与展望

  1. 优化模拟参数:为了提高模拟结果的准确性,可以进一步优化模拟参数,如增加符号数量、调整信道模型等。
  2. 研究其他调制技术:可以进一步研究其他调制技术在瑞利信道中的性能,如64 QAM、QPSK等,以比较不同调制技术的优劣。
  3. 探索先进的信号处理技术:可以探索先进的信号处理技术,如信道编码、多天线技术等,以提高16 QAM在瑞利信道中的传输性能。

📚2 运行结果

 部分代码:


% Finally plot the BER Vs. SNR(dB) Curve on logarithmic scale 
% BER through Simulation

figure(1);
semilogy(Eb_No,BER,'xr-','Linewidth',2);
hold on;
xlabel('E_b / N_o (dB)');
ylabel('BER');
title('E_b / N_o Vs BER plot for 16-QAM Modualtion in Rayleigh Channel');

% Theoretical BER
figure(1);
theoryBerAWGN = 0.5.*erfc(sqrt((10.^(Eb_No/10))));
semilogy(Eb_No,theoryBerAWGN,'g-+','Linewidth',2);
grid on;
legend('Rayleigh', 'AWGN');
axis([Eb_No(1,1) Eb_No(end) 0.00001 1]);

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)

[1]孔令红,都思丹.多径瑞利衰落信道下OFDM系统仿真[J].计算机仿真, 2008, 25(7):4.

[2]马林.OFDM自适应调制性能研究[D].哈尔滨工业大学,2009.DOI:10.7666/d.D268228.

[3]张齐治,朱旭明,易清明,等.瑞利信道MQAM传输误码性能数值分析——移动通信中多电平正交振幅调制方案的优化考虑(二)[J].通信技术, 2002.

[4]代光发,陈少平.时变瑞利信道中存在频偏的OFDM系统性能分析[J].中南民族大学学报(自然科学版), 2008, 027(002):63-67.

🌈Matlab代码实现

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值