💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
改进的多重同步挤压变换概述 改进的多重同步挤压变换(Improved Multisynchrosqueezing Transform,简称 IMST)是信号处理领域一项极具创新性与前沿性的技术,旨在突破传统信号分析方法的局限,对复杂信号进行更精准、深入的剖析。
一、原理基础
它扎根于时频分析理论,在经典的同步挤压变换(SST)之上进行拓展。同步挤压变换通过对信号的小波变换结果进行重新分配,将时频能量集中到更精确的区域,以提升时频分辨率。而改进的多重同步挤压变换进一步优化这一过程,它采用多重分析窗口或多尺度变换策略,对信号从不同维度、不同粒度进行分解与重构。例如,运用多个具有不同中心频率或带宽的小波函数同时作用于信号,捕捉信号在不同频段、不同时间尺度下的特征,之后依据特定的挤压规则,将分散的时频信息汇聚,使得信号在时频域中的呈现更加清晰、准确,能有效凸显信号的瞬时频率变化、模态分量等关键信息。
二、优势特点
1. 高分辨率:相较于传统的傅里叶变换及其衍生方法,IMST 在时频域展现出卓越的分辨率。无论是分析具有突变特性的冲击信号,还是包含多个频率成分且频率随时间变化的调频信号,都能精准定位各频率成分出现的时间区间以及其动态变化过程,为信号的精细解读提供有力支撑。 2. 模态分离能力强:在处理多分量复杂信号时,IMST 能够凭借其独特的多重变换机制,将混合在一起的不同模态信号清晰地分离开来。这对于机械故障诊断领域意义重大,如在分析旋转机械的振动信号时,可以准确地将因轴承故障、转子不平衡等不同原因产生的振动模态区分开,从而精准定位故障源。 3. 抗噪性能良好:通过巧妙的多尺度分析和信息融合,IMST 对噪声干扰具有一定的抵抗力。在实际应用场景中,信号往往伴随着大量背景噪声,IMST 可以在分解过程中,将噪声成分分散并弱化,使得有用信号的特征在时频图中依然突出,保障后续分析与诊断的准确性。
三、应用领域
1. 生物医学工程:在脑电图(EEG)、心电图(ECG)分析中,IMST 可用于分离不同生理节律对应的信号成分,辅助医生诊断神经系统疾病、心血管疾病等。例如,将 EEG 中代表癫痫发作的异常脑电波从正常脑电活动背景中精准剥离,为疾病的早期发现与精准治疗提供依据。 2. 机械工程与故障诊断:对于大型机械设备、交通工具发动机等的振动、噪声信号,IMST 能快速准确地判断设备的运行状态,检测出潜在的故障隐患,提前安排维修保养,降低设备故障率,提高生产安全性与可靠性。 3. 地球物理勘探:在地震勘探数据处理中,IMST 有助于提取隐藏在复杂地质数据中的微弱有效信号,分析地层结构变化,为石油、天然气等资源的勘探开发提供更精确的地下信息。 4. 通信与雷达信号处理**:在通信领域,IMST 可用于信道估计、信号解调等环节,提高通信质量与数据传输速率;在雷达信号处理方面,它能够增强对目标回波信号的分析能力,提升雷达对目标的探测精度、识别能力,在军事国防、航空航天等领域发挥关键作用。
四、发展前景
随着科技不断进步,改进的多重同步挤压变换有望持续优化升级。一方面,在算法复杂度优化上,研究人员将致力于降低计算成本,使其能够更高效地应用于实时性要求较高的场景;另一方面,与新兴技术如人工智能、大数据的融合将成为趋势,通过机器学习算法自动调整 IMST 的参数,以适应不同类型信号的处理需求,或是利用大数据挖掘更多信号特征模式,进一步拓展其应用广度与深度,为众多学科领域的发展注入强大动力,助力解决更多复杂的现实问题。 希望以上概述对你有所帮助,若你对内容的深度、广度等方面有进一步要求,请随时提出。
📚2 运行结果
主函数部分代码:
clear;
SampFreq = 100;
t = 0 : 1/SampFreq : 4-1/SampFreq;
Sig = [sin(2*pi*(25*t + 10*sin(1.5*t)))];
[m,n]=size(Sig);
time=(1:n)/SampFreq;
fre=(SampFreq/2)/(n/2):(SampFreq/2)/(n/2):(SampFreq/2);
[Ts] = IMSST_Z(Sig',40,10);
x1=3.12; x2=3.34;
y1=23.7; y2=29.8;
figure;
ha=subplot(221);
imagesc(time,fre,abs(Ts));
xlabel('Time (s)');
ylabel('Fre (Hz)');
axis xy
rectangle('Position',[x1 y1 x2-x1 y2-y1],'EdgeColor','red','Linewidth',1);
ha=subplot(222);
imagesc(time,fre,abs(Ts));
xlabel('Time (s)');
ylabel('Fre (Hz)');
axis xy
set(ha,'xlim',[x1 x2],'ylim',[y1 y2]);
subplot(2,2,[3 4]);
plot(time,Sig,'k-');hold on;
plot(time,sum(real(Ts)),'r--');
axis([0 4 -1 1]);
xlabel('Time (s)');
ylabel('Amp (V)');
legend('Orignal signal','Reconstructed signal');
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
[1]袁平平,赵周杰,苏慧琳,等.基于改进多重同步挤压样条Chirplet变换的结构瞬时频率识别[J].振动与冲击,2024,43(17):145-153.DOI:10.13465/j.cnki.jvs.2024.17.016.
[2]袁平平,程雪莉,王航航,等.基于改进多重同步挤压广义S变换的结构瞬时频率识别研究[J].振动与冲击,2022,41(08):193-198+237.DOI:10.13465/j.cnki.jvs.2022.08.023.