👨🎓个人主页
💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
能源危机和环境污染是传统形式发电中存在的两个重要问题,而微电网可以在一定程度上减缓这两大问题[1] 。 微电网概念最早由美国电气可靠性技术协会(CERTS)提出[2] ,微电 网 是 由各种分布式电源、储能单元、负荷以及监控和保护装置组成的集合,具有灵活的运行方式和可调度性能,能在并网运行和孤岛运行两种模式间切换。 微电网的并网运行模式可以达到削峰填谷、
提高分布式能源利用率、发展友好型电网的目的,而微电网的孤岛运行模式可以有效解决孤岛及偏远地区用电难的问题。 分布式发电技术的应用, 使得微电网发电技术为解决现阶段全球变暖以及环境恶化、 不可再生能源的储量减少等环境问题提供了有效的方法。 微电网能量管理和优化调度问题作为微电网发展的重要研究方面,成为微电网不断推广的关键技术,因而具有重要的理论价值和工程价值。目前, 专家学者们在微电网的研究领域已取得了一定的成果,但微电网在优化调度、能量控制等方面还存在很多问题,针对这些问题,很多专家学者采用不同的算法、不同的研究模型对其进行了改进。 文献[3]详细介绍了微电网的概念、基本运行方式和控制策略, 分析了国外不同特点的典型微电网示范工程及实验测试系统;文献[4]采用粒子群算法,以污染气体排放和微电源的运行费用作为目标函数,建立优化模型,对微电网的负荷进行调度优化;文献[5]采用改进的自适应遗传算法,考虑微电源的燃料成本、维护成本与起动成本,以及动态的网络损耗量和购电、售电价格等因素建立模型,对孤网运行和并网运行两种情况进行优化仿真,实现了对微电网的负荷优化。
微电网的分布式电源主要由风力发电,光伏发电电池,微型燃气轮机,燃料电池等组成,首先我们对这主要的几种分布式电源建立数学模型,并加入相关的约束条件,以方便后期进行优化调度。微电网优化调度是通过所建立的分布式电源的数学模型以及约束条件,在这个前提下面,进行调度协调优化各个电源的发电及用电方式,达到微电网运行的灵活性和经济性。而粒子群算法具有收敛速度高,算法鲁棒性好,优化效率高的特点,因此可以将其引用到微电网经济调度优化。该算法最初是受到飞鸟集群活动的规律性启发,在对动物集群活动行为观察基础上,利用群体中的个体对信息的共享使整个群体的运动在问题求解空间中产生从无序到有序的演化过程,从而获得最优解。通过粒子群算法对上述的各种分布式电源的数学模型以及相关约束条件进行带入,已建立运行成本的微电网经济优化为目标函数,寻找经济优化调度最优解,从而实现微电网经济调度最优化,可以先通过寻找y=x*sin(x)*cos(2x)-2*x*sin(3x)的最大值验证粒子群算法最优解的准确性,结果如图1所示,可以看到粒子群算法成功找到了最优解。
详细文章讲解和数学模型讲解见第4部分。
基于粒子群和遗传算法的微电网优化调度研究
一、微电网优化调度的基本概念与目标
微电网优化调度旨在通过协调分布式电源(DG)、储能设备、负荷等资源,实现经济性、环保性、可靠性的多目标平衡。其核心目标包括:
- 经济性:最小化运行成本(如发电成本、购电成本)、最大化能源交易收益。
- 环保性:降低碳排放与污染物排放,提升可再生能源利用率。
- 可靠性:保障供电质量与系统稳定性,满足功率平衡约束、设备容量限制等。
挑战:可再生能源出力与负荷的不确定性、多目标间的冲突、高维度非线性约束(如储能充放电速率、机组爬坡约束)等。例如,光伏与风电的间歇性需结合气象预测和随机优化框架(如无迹变换)建模。
二、粒子群算法(PSO)在微电网优化中的应用
1. 算法原理与改进策略
-
基本原理:模拟鸟群协作搜索,通过粒子位置和速度更新寻找最优解,核心公式为:
-
改进策略:
- 动态参数调整:自适应惯性权重与学习因子,避免早熟收敛。
- Levy飞行策略:增强全局搜索能力,跳出局部最优。
- 多目标优化:结合帕累托前沿排序,平衡经济性与碳排放。
2. 应用场景
- 单目标优化:如最小化运行成本,优化储能充放电策略以利用电价峰谷差。
- 多目标优化:协调经济性与环保性,例如在风光储系统中优化弃风弃光率。
- 实际案例:某微电网通过PSO优化后,运行成本降低5%-8%,收敛速度提升25%。
优缺点:
- 优势:参数少、实现简单,适合高维问题。
- 局限:易陷入局部最优,需结合其他策略增强全局搜索。
三、遗传算法(GA)在微电网优化中的应用
1. 算法原理与改进策略
- 基本原理:模拟生物进化,通过选择、交叉、变异操作生成新解。
- 改进策略:
- 自适应参数:动态调整交叉与变异概率,提高收敛速度。
- 混合编码:结合二进制与实数编码,处理多类型变量(如机组启停状态、储能SOC)。
- 环境约束集成:在适应度函数中引入惩罚项,强制满足环保约束。
2. 应用场景
- 孤岛模式优化:在无主网支持时,优化风光储配置以最小化缺电率。
- 多目标调度:平衡运行成本与碳排放,例如燃气轮机与储能协同调度。
- 实际案例:改进GA在某微电网中降低运行成本5%,污染物排放减少8%。
优缺点:
- 优势:全局搜索能力强,适合复杂非线性问题。
- 局限:收敛速度慢,编码设计复杂。
四、PSO与GA的对比分析
维度 | PSO | GA |
---|---|---|
收敛速度 | 快(适合实时调度) | 慢(需更多迭代) |
全局搜索能力 | 较弱(易局部最优) | 强(交叉与变异增强多样性) |
参数敏感性 | 对初始参数敏感 | 参数选择复杂 |
适用场景 | 单目标或低维多目标优化 | 高维多目标与复杂约束 |
实验对比:PSO在微电网缩放问题中收敛速度比GA快25%,但GA在复杂约束下稳定性更优。
五、混合算法(PSO-GA)的研究进展
1. 混合策略
- 层次化融合:PSO生成初始种群,GA进行深度搜索,实现“全局探索-局部开发”的平衡。
- 交叉操作引入:在PSO中嵌入GA的交叉算子,提升解多样性。
- 动态切换机制:根据收敛状态切换PSO与GA,避免早熟。
2. 优势与案例
- 优势:综合PSO的快速收敛与GA的全局搜索,计算成本降低15%-20%。
- 案例:某混合算法在车间调度问题中相对偏差小于2%;在微电网优化中,总成本降低10%。
六、实际应用与未来方向
1. 典型案例
- 风光储微电网:通过PSO-GA混合算法优化,土地利用效率提升10%,社区满意度提高7%。
- 工业微电网:结合模型预测控制(MPC)与混合算法,实现日内滚动调度偏差修正。
2. 未来趋势
- 不确定性建模:结合深度强化学习与历史数据,提升鲁棒性。
- 多能源协同:集成电、热、氢能系统,实现综合能源优化。
- 分布式优化:针对微电网群,设计分层分布式调度框架。
结论
粒子群与遗传算法在微电网优化中各具优势,混合算法通过融合两者特性,显著提升了调度效率与解的质量。未来研究需进一步结合人工智能技术(如机器学习)、深化多目标权衡机制,并推动算法在实际工程中的规模化应用。
📚2 运行结果
2.1 粒子群优化算法求解结果
2.2 遗传算法求解结果
🎉3 参考文献
部分理论来源于网络,如有侵权请联系删除。
[1]高杰,邹必昌.基于粒子群算法的微电网经济优化调度[J].电子世界,2019(20):21+26.DOI:10.19353/j.cnki.dzsj.2019.20.006.
[2]储海兵.基于遗传算法的微电网优化调度[J].工业控制计算机,2019,32(02):151-153.