随机调度模型的预备知识

文章讨论了加工时间和提交时间的分布,重点介绍了指数分布和几何分布。指数分布是连续时间的随机变量,具有恒定的完成率,而几何分布是离散时间的,两者都具有无记忆性。此外,还提到了完成率的概念以及Erlang分布作为递增完成率分布的例子。
摘要由CSDN通过智能技术生成


1.框架和符号

假定加工时间、提交时间和工期的分布都是已知的,也即在时间的起始点已知;而随机加工时间产生的实际结果只或实现只有当操作结束时才成为已知;提交时间或工期的实现只有在实际发生时刻才已知。

约定:随机变量以大写字母表示,而已实现的实际值以小写字母表示。工件 j j j具有以下值得关注的相关量。

  1. X i j X_{ij} Xij:在机器 i i i上工件 j j j的加工时间。若工件 j j j只在一台机器上进行操作,或在每台需要加工的机器上的加工时间都相同,则下表 i i i可省略。
  2. 1 / λ i j 1/\lambda_{ij} 1/λij随机变量 X i j X_{ij} Xij的平均值或期望值。
  3. R j R_j Rj:工件 j j j的随机提交时间。
  4. D j D_j Dj:工件 j j j的随机工期。
  5. w j w_j wj:工件 j j j的权重(或重要因子)。

2.分布及其分类

分布和密度函数具有多种形式,下文只考虑非负的随机变量。
  密度函数可能在给定的时间间隔上是连续的,也可能在给定离散点上集中于一定的值。也即分布函数并不是处处可微的。
  在连续时间分布中,随机变量可以假定为在一个或多个时间间隔中的任何非负实值。常用 F ( t ) F(t) F(t)来表示连续时间分布的分布函数,用 f ( t ) f(t) f(t)表示密度函数。即
F ( t ) = P ( X ≤ t ) = ∫ 0 t f ( t ) d t F(t)=P(X\leq t)=\int_0^tf(t)dt F(t)=P(Xt)=0tf(t)dt,其中 f ( t ) = d F ( t ) d t f(t)=\frac{dF(t)}{dt} f(t)=dtdF(t),进一步
F ‾ ( t ) = 1 − F ( t ) = P ( X ≥ t ) \overline{F}(t)=1-F(t)=P(X\geq t) F(t)=1F(t)=P(Xt)
分布函数及密度函数

指数分布

密度函数: f ( t ) = λ e − λ t f(t)=\lambda e^{-\lambda t} f(t)=λeλt
分布函数: F ( t ) = 1 − e − λ t F(t)=1-e^{-\lambda t} F(t)=1eλt,其值等于变量 X X X小于 t t t的概率。
变量 X X X的平均值或期望值等于
E ( X ) = ∫ 0 ∞ t d F ( t ) = 1 λ E(X)=\int_0^\infty tdF(t)=\frac{1}{\lambda} E(X)=0tdF(t)=λ1式中,参数 λ \lambda λ被称为指数分布的速率
指数分布

几何分布

假设离散时间分布随机变量只在非负整数时间点上取值,即当 t = 0 , 1 , 2 , ⋯ t=0,1,2,\cdots t=0,1,2,时, P ( X = t ) ≥ 0 P(X=t)\geq 0 P(X=t)0,而在其他情形下, P ( X = t ) = 0 P(X=t)=0 P(X=t)=0。一类重要的离散时间分布是确定性分布。在确定性分布中,假设随机变量给定值的发生概率是1.
随机变量取值概率为(第二种几何分布): P ( X = t ) = ( 1 − q ) q t P(X=t)=(1-q)q^t P(X=t)=(1q)qt
它的分布函数为
P ( X ≤ t ) = ∑ s = 0 t ( 1 − q ) q s = 1 − ∑ s = t + 1 ∞ ( 1 − q ) q s = 1 − q t + 1 P(X\leq t)=\sum_{s=0}^t(1-q)q^s=1-\sum_{s=t+1}^\infty (1-q)q^s=1-q^{t+1} P(Xt)=s=0t(1q)qs=1s=t+1(1q)qs=1qt+1
其平均值为
E ( X ) = q 1 − q E(X)=\frac{q}{1-q} E(X)=1qq

完成率

  1. 连续时间随机变量 X X X的完成率 c ( t ) c(t) c(t)可用其密度函数 f ( t ) f(t) f(t)和分布函数 F ( t ) F(t) F(t)表示如下:
    c ( t ) = f ( t ) 1 − F ( t ) c(t)=\frac{f(t)}{1-F(t)} c(t)=1F(t)f(t)
      这里的完成率等于可靠性理论中的失效率或风险率。对指数分布的随机变量来说,在任何时刻 t t t c ( t ) = λ c(t)=\lambda c(t)=λ
      该完成率与时间无关,是指数分布在随即调度中起重要作用的原因之一。这个性质与指数分布的无记忆性紧密相关,这意味着在经过时间 t t t以后,工作的剩余加工时间的分布符合速率为 λ \lambda λ的指数分布,并且与操作刚开始时候的加工时间分布相同。
  2. 离散时间分布的随机变量完成率定义如下: c ( t ) = P ( X = t ) P ( X ≥ t ) c(t)=\frac{P(X=t)}{P(X\geq t)} c(t)=P(Xt)P(X=t)
  3. 几何分布的离散时间完成率为: c ( t ) = P ( X = t ) P ( X ≥ t ) = 1 − q ) q t q t = 1 − q , t = 1 , 2 , ⋯ c(t)=\frac{P(X=t)}{P(X\geq t)}=\frac{1-q)q^t}{q^t}=1-q,t=1,2,\cdots c(t)=P(Xt)P(X=t)=qt1q)qt=1q,t=1,2,这是一个与t无关的常量,意味着如果某项工作在时间 t t t以前尚未完成,那么该工件在时间 t t t时完成的概率是 1 − q 1-q 1q。因此几何分布也具有无记忆性。实质上,几何分布相当于是在离散时间上的指数分布。
      无论是离散时间分布还是连续时间分布,它们都可以根据完成率进行分类。定义递增完成率(increasing completion rate,ICR)分布为完成率在时间 t t t内递增的分布;而递减完成率(decreasing completion rate,DCR)分布是完成率在时间 t t t内递减的分布。
       E r l a n g ( k , λ ) Erlang(k,\lambda) Erlang(k,λ)分布是连续时间递增完成率分布中的一类,其定义如下:
    F ( t ) = 1 − ∑ r = 0 k − 1 ( λ t ) r e − λ t r ! F(t)=1-\sum_{r=0}^{k-1} \frac{(\lambda t)^re^{-\lambda t}}{r!} F(t)=1r=0k1r!(λt)reλt
    E r l a n g ( k , a ) Erlang(k,a) Erlang(k,a)分布是具有速率为 λ \lambda λ的相同指数分布的 k k k阶卷积。 E r l a n g ( k , λ ) Erlang(k,\lambda) Erlang(k,λ)分布的平均值等于 k / λ k/\lambda k/λ。如果 k = 1 k=1 k=1,那么该分布就是指数分布。当 k / λ = 1 k/\lambda=1 k/λ=1时,如果 k k k λ \lambda λ同时趋近于正无穷,那么 E r l a n g ( k , λ ) Erlang(k,\lambda) Erlang(k,λ)分布趋近于平均值为1的确定性分布。
    混合指数(mixtures of exponential)分布是连续时间的递减完成率分布中的一类。如果随机变量 X X X p j p_j pj的概率服从速率为 λ j ( j = 1 , 2 , ⋯   , n ) \lambda_j(j=1,2,\cdots,n) λj(j=1,2,,n)的指数分,并且 ∑ j = 1 n p j = 1 \sum_{j=1}^np_j=1 j=1npj=1
      那么X就是服从复合指数分布的。指数分布和确定性分布都是递增完成率分布的特殊形式。指数分布同时也是递减完成率分布的特殊形式。递减完成率分布还包括其他的特殊分布,例如,令 $X 服从以 服从以 服从以p$的概率等于以 1 / p 1/p 1/p为均值的指数分布,且以 1 − p 1-p 1p的概率等于0。该分布的平均值和方差分别是 $E(X)=1 $和 V a r ( X ) = 2 / p − 1 Var(X)=2/p-1 Var(X)=2/p1。当 p p p非常接近0时,该分布即是**极限混合指数(extreme mixture ofexponentials,EME)**分布。当然,也可以在离散时间的情形下构造相似的分布。
    可以通过分布的变异因子 C v ( X ) C_v(X) Cv(X)衡量分布的变异程度,其中, C v ( X ) C_v(X) Cv(X)定义为方差的平方根(也就是标准差)除以平均值,也就是 C v ( X ) = Var ⁡ ( X ) E ( X ) = E ( X 2 ) − [ E ( X ) ] 2 E ( X ) C_v(X)=\frac{\sqrt{\operatorname{Var}(X)}}{E(X)}=\frac{\sqrt{E\left(X^2\right)-[E(X)]^2}}{E(X)} Cv(X)=E(X)Var(X) =E(X)E(X2)[E(X)]2
      很容易验证,确定性分布的 C v ( X ) C_v(X) Cv(X),指数分布的 C v ( X ) = 1 C_v(X)=1 Cv(X)=1。极限混合指数分布的 C v ( X ) C_v(X) Cv(X)值可以是任意大的值(当接近0时, C v ( X ) C_v(X) Cv(X)将趋近于正无穷)。可以设想,几何分布的 C v ( X ) = 1 C_v(X)=1 Cv(X)=1,因为几何分布是离散时间上的指数分布。事实上,如前面定义,几何分布的 C v ( X ) = 1 / q C_v(X)=1/\sqrt q Cv(X)=1/q
    在这里插入图片描述
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

古道西风瘦码

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值