7.3 基变换

  同一矩阵在不同基下坐标是不一样的。在不同基下怎么转换呢?先拿向量来说,假设向量为 ( 1 , 2 , 3 ) T (1,2,3)^T (1,2,3)T,在以下这组基下坐标是什么?
ϵ 1 = ( 1 1 2 ) , ϵ 2 = ( 1 2 2 ) , ϵ 3 = ( 1 3 3 ) \epsilon_1=\begin{pmatrix} 1\\1\\2 \end{pmatrix}, \epsilon_2=\begin{pmatrix} 1\\2\\2 \end{pmatrix}, \epsilon_3=\begin{pmatrix} 1\\3\\3 \end{pmatrix} ϵ1= 112 ,ϵ2= 122 ,ϵ3= 133
  其实这个问题就是将向量表示为三个基的线性组合,也就是从这个角度讲,方程组的求解其实是找向量的线性组合,那么我们解这个方程:
( 1 1 1 1 2 3 2 2 3 ) x = ( 1 2 3 ) x = ( 1 − 1 1 ) \begin{pmatrix} 1 & 1 & 1\\ 1 & 2 & 3\\ 2 & 2 &3 \end{pmatrix}x=\begin{pmatrix} 1\\2\\3 \end{pmatrix}\\ x=\begin{pmatrix} 1\\-1\\1 \end{pmatrix}\\ 112122133 x= 123 x= 111
  那么矩阵在另一个基下的矩阵,也可以用解方程的方式求解,比如下列矩阵:
( 7 5 3 − 1 6 4 2 − 2 3 ) \begin{pmatrix} 7 & 5 & 3\\ -1 & 6 & 4\\ 2 & -2 & 3 \end{pmatrix} 712562343
  这个矩阵在上述这组基下的坐标就是每个列向量都解方程,可以计算出来是:
( 3 − 8 − 1 16 25 7 − 12 − 12 − 3 ) \begin{pmatrix} 3 & -8 & -1\\ 16 & 25 & 7\\ -12 & -12 & -3 \end{pmatrix} 3161282512173
  这样解方程是挺麻烦的,有没有快点的办法?可以利用基的逆矩阵:
( 0 − 1 1 3 1 − 2 − 2 0 1 ) \begin{pmatrix}0 & -1 & 1\\ 3 & 1 & -2\\ -2 & 0 & 1\\ \end{pmatrix} 032110121
  很快就可以计算出来:
( 0 − 1 1 3 1 − 2 − 2 0 1 ) ( 7 5 3 − 1 6 4 2 − 2 3 ) = ( 3 − 8 − 1 16 25 7 − 12 − 12 − 3 ) \begin{pmatrix}0 & -1 & 1\\ 3 & 1 & -2\\ -2 & 0 & 1\\ \end{pmatrix}\begin{pmatrix} 7 & 5 & 3\\ -1 & 6 & 4\\ 2 & -2 & 3 \end{pmatrix}=\begin{pmatrix}3 & -8 & -1\\ 16 & 25 & 7\\ -12 & -12 & -3\\ \end{pmatrix} 032110121 712562343 = 3161282512173
  所以基变换是很简单的,直接用逆矩阵就行了。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

醒过来摸鱼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值