使用YOLOV5训练数据之后我们需要一些评判标准来告诉我们所训练的效果究竟如何。这时,YOLOV5给出了一个文件解决我们的问题。该文件在直接生成为runs文件,可理解记录一些运行时的日志信息。
confusion_matrix.png(混淆矩阵)
作为一种特定的二维矩阵,列代表预测的类别,行代表实际的类别。其对角线上的值表示预测正确的数量比例,非对角线元素则是预测错误的部分。混淆矩阵的对角线值越高越好,这表明许多预测是正确的。
上图是对是否戴口罩进行训练,有图可以看出 将一个图片分为了三个部分,分别是戴口罩,不戴口罩和background FP。该图在每列上进行归一化处理。则可以看出戴口罩预测正确的概率为85%。不带口罩预测正确的概率为70%。
F1_curve:
F1分数与置信度(x轴)之间的关系。F1分数是分类的一个衡量标准,是精确率和召回率的调和平均函数,介于0,1之间。越大越好。
需要知道精确率和号回率是什么首先需要知道四值:TP,FN,FP,TN。
TP:真实为真,预测为真;
FN:真实为真,预测为假;
FP:真实为假,预测为真;