NNDL 作业9 RNN - SRN

1、实现SRN

(Simple Recurrent Network,只有一个隐藏层的神经网络)

(1)使用Numpy

在这里插入图片描述

SRN实现过程

import numpy as np

inputs = np.array([[1., 1.],
                   [1., 1.],
                   [2., 2.]])  # 初始化输入序列
print('inputs is ', inputs)

state_t = np.zeros(2, )  # 初始化存储器
print('state_t is ', state_t)
w=np.ones(8)
U=np.ones(4)
print('--------------------------------------')
for input_t in inputs:
    print('inputs is ', input_t)
    print('state_t is ', state_t)
    in_h1 = np.dot([w[0], w[2]], input_t) + np.dot([U[1], U[3]], state_t)
    in_h2 = np.dot([w[1], w[3]], input_t) + np.dot([U[0], U[2]], state_t)
    state_t = in_h1, in_h2
    output_y1 = np.dot([w[4], w[6]], [in_h1, in_h2])
    output_y2 = np.dot([w[5], w[7]], [in_h1, in_h2])
    print('output_y is ', output_y1, output_y2)
    print('---------------')

在这里插入图片描述

(2)在1的基础上,增加激活函数tanh

在这里插入图片描述
tanh激活函数

import numpy as np

inputs = np.array([[1., 1.],
                   [1., 1.],
                   [2., 2.]])  # 初始化输入序列
print('inputs is ', inputs)

state_t = np.zeros(2, )  # 初始化存储器
print('state_t is ', state_t)
w=np.ones(8)
U=np.ones(4)
print('--------------------------------------')
for input_t in inputs:
    print('inputs is ', input_t)
    print('state_t is ', state_t)
    in_h1 = np.tanh(np.dot([w[0], w[2]], input_t) + np.dot([U[1], U[3]], state_t))
    in_h2 = np.tanh(np.dot([w[1], w[3]], input_t) + np.dot([U[0], U[2]], state_t))
    state_t = in_h1, in_h2
    output_y1 = np.dot([w[4], w[6]], [in_h1, in_h2])
    output_y2 = np.dot([w[5], w[7]], [in_h1, in_h2])
    print('output_y is ', output_y1, output_y2)
    print('----------------')

在这里插入图片描述

(3)使用nn.RNNCell实现

在这里插入图片描述


import torch

batch_size = 1
seq_len = 3  # 序列长度
input_size = 2  # 输入序列维度
hidden_size = 2  # 隐藏层维度
output_size = 2  # 输出层维度

# RNNCell
cell = torch.nn.RNNCell(input_size=input_size, hidden_size=hidden_size)
for name, param in cell.named_parameters():
    if name.startswith("weight"):
        torch.nn.init.ones_(param)
    else:
        torch.nn.init.zeros_(param)
# 线性层
liner = torch.nn.Linear(hidden_size, output_size)
liner.weight.data = torch.Tensor([[1, 1], [1, 1]])
liner.bias.data = torch.Tensor([0.0])

seq = torch.Tensor([[[1, 1]],
                    [[1, 1]],
                    [[2, 2]]])
hidden = torch.zeros(batch_size, hidden_size)
output = torch.zeros(batch_size, output_size)

for idx, input in enumerate(seq):
    print('=' * 20, idx, '=' * 20)

    print('Input :', input)
    print('hidden :', hidden)

    hidden = cell(input, hidden)
    output = liner(hidden)
    print('output :', output)

在这里插入图片描述

(4)使用nn.RNN实现

import torch
 
batch_size = 1
seq_len = 3
input_size = 2
hidden_size = 2
num_layers = 1
output_size = 2
 
cell = torch.nn.RNN(input_size=input_size, hidden_size=hidden_size, num_layers=num_layers)
for name, param in cell.named_parameters():  # 初始化参数
    if name.startswith("weight"):
        torch.nn.init.ones_(param)
    else:
        torch.nn.init.zeros_(param)
 
# 线性层
liner = torch.nn.Linear(hidden_size, output_size)
liner.weight.data = torch.Tensor([[1, 1], [1, 1]])
liner.bias.data = torch.Tensor([0.0])
 
inputs = torch.Tensor([[[1, 1]],
                       [[1, 1]],
                       [[2, 2]]])
hidden = torch.zeros(num_layers, batch_size, hidden_size)
out, hidden = cell(inputs, hidden)
 
print('Input :', inputs[0])
print('hidden:', 0, 0)
print('Output:', liner(out[0]))
print('--------------------------------------')
print('Input :', inputs[1])
print('hidden:', out[0])
print('Output:', liner(out[1]))
print('--------------------------------------')
print('Input :', inputs[2])
print('hidden:', out[1])
print('Output:', liner(out[2]))

在这里插入图片描述

2、实现“序列到序列”

nn.RNN

import torch

batch_size = 1
seq_len = 3
input_size = 4
hidden_size = 2
num_layers = 1

cell=torch.nn.RNN (input_size= input_size ,hidden_size= hidden_size ,num_layers= num_layers ,batch_first= True)
inputs=torch.randn(batch_size ,seq_len,input_size )
hidden=torch.zeros(num_layers ,batch_size ,hidden_size )

out,hidden =cell(inputs,hidden)

print('Outputs size:',out.shape)
print('Output:',out)
print('Hidden size:',hidden.shape)
print('Hidden:',hidden)

在这里插入图片描述
在这里插入图片描述
将单词拆分为字母,每个字母对应一个数字,将数字转换成独热编码

import torch
batch_size = 1
num_layers=1
input_size = 4
hidden_size = 4
seq_len=5

idx2char=['e','h','l','o']
x_data=[1,0,2,2,3]
y_data=[3,1,2,3,2]

one_hot_lookup=[[1,0,0,0],
                [0,1,0,0],
                [0,0,1,0],
                [0,0,0,1]]
x_one_hot=[one_hot_lookup[x] for x in x_data ]
inputs=torch.Tensor(x_one_hot ).view(seq_len ,batch_size ,input_size )
labels=torch.LongTensor (y_data )

class Model(torch.nn.Module ):
    def __init__(self,input_size,hidden_size,batch_size,num_layers=1):
        super(Model ,self).__init__()
        self.num_layers=num_layers
        self.batch_size =batch_size
        self.input_size=input_size
        self.hidden_size=hidden_size
        self.rnn=torch.nn.RNN (input_size= self.input_size ,hidden_size= self.hidden_size ,num_layers= num_layers )

    def forward(self,input):
        hidden=torch.zeros(self.num_layers ,self.batch_size ,self.hidden_size )
        out,_=self.rnn(input,hidden)
        return out.view(-1,self.hidden_size )

    def init_hidden(self):
        return torch.zeros(self.batch_size,self.hidden_size )

net=Model(input_size,hidden_size,batch_size ,num_layers )
criterion=torch.nn.CrossEntropyLoss ()#交叉熵
optimizer=torch.optim.Adam (net.parameters() ,lr=0.1)#优化器

for epoch in range(15):
    optimizer.zero_grad()
    outputs=net(inputs )
    loss=criterion (outputs ,labels )
    loss.backward()
    optimizer.step()

    _,idx=outputs .max(dim=1)
    idx=idx.data.numpy()
    print('Predicted :',''.join([idx2char [x]for x in idx]),end='')
    print(',Epoch [%d/15] loss=%.4f'%(epoch +1,loss.item()))

在这里插入图片描述
通过测试发现,当学习率=0.1时,效果最好,大于0.1或者小于0.1都不能很快的预测出想要的结果。但是,在学习率=0.1时,也会出现不稳定的情况,不能在15轮内预测出‘ohlol’。

3、“编码器-解码器”的简单实现

编码器-解码器(异步的序列到序列)

在自然语言处理中,输入输出都可以是不定长序列,此时可以用编码器—解码器(encoder-decoder )
在这里插入图片描述
编码器接受一个长度可变的序列作为输入, 并将其转换为具有固定形状的编码状态。
解码器将固定形状的编码状态映射到长度可变的序列。
在这里插入图片描述

在这里插入图片描述

import torch
import numpy as np
import torch.nn as nn
import torch.utils.data as Data

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
letter = [c for c in 'SE?abcdefghijklmnopqrstuvwxyz']
letter2idx = {n: i for i, n in enumerate(letter)}

seq_data = [['man', 'women'], ['black', 'white'], ['king', 'queen'], ['girl', 'boy'], ['up', 'down'], ['high', 'low']]

# Seq2Seq Parameter
n_step = max([max(len(i), len(j)) for i, j in seq_data])  # max_len(=5)
n_hidden = 128
n_class = len(letter2idx)  # classfication problem
batch_size = 3


def make_data(seq_data):
    enc_input_all, dec_input_all, dec_output_all = [], [], []

    for seq in seq_data:
        for i in range(2):
            seq[i] = seq[i] + '?' * (n_step - len(seq[i]))

        enc_input = [letter2idx[n] for n in (seq[0] + 'E')]  # ['m', 'a', 'n', '?', '?', 'E']
        dec_input = [letter2idx[n] for n in ('S' + seq[1])]  # ['S', 'w', 'o', 'm', 'e', 'n']
        dec_output = [letter2idx[n] for n in (seq[1] + 'E')]  # ['w', 'o', 'm', 'e', 'n', 'E']

        enc_input_all.append(np.eye(n_class)[enc_input])
        dec_input_all.append(np.eye(n_class)[dec_input])
        dec_output_all.append(dec_output)  # not one-hot

    # make tensor
    return torch.Tensor(enc_input_all), torch.Tensor(dec_input_all), torch.LongTensor(dec_output_all)

enc_input_all, dec_input_all, dec_output_all = make_data(seq_data)


class TranslateDataSet(Data.Dataset):
    def __init__(self, enc_input_all, dec_input_all, dec_output_all):
        self.enc_input_all = enc_input_all
        self.dec_input_all = dec_input_all
        self.dec_output_all = dec_output_all

    def __len__(self):  # return dataset size
        return len(self.enc_input_all)

    def __getitem__(self, idx):
        return self.enc_input_all[idx], self.dec_input_all[idx], self.dec_output_all[idx]


loader = Data.DataLoader(TranslateDataSet(enc_input_all, dec_input_all, dec_output_all), batch_size, True)


# Model
class Seq2Seq(nn.Module):
    def __init__(self):
        super(Seq2Seq, self).__init__()
        self.encoder = nn.RNN(input_size=n_class, hidden_size=n_hidden, dropout=0.5)  # encoder
        self.decoder = nn.RNN(input_size=n_class, hidden_size=n_hidden, dropout=0.5)  # decoder
        self.fc = nn.Linear(n_hidden, n_class)

    def forward(self, enc_input, enc_hidden, dec_input):
        enc_input = enc_input.transpose(0, 1)
        dec_input = dec_input.transpose(0, 1)

        _, h_t = self.encoder(enc_input, enc_hidden)
        outputs, _ = self.decoder(dec_input, h_t)

        model = self.fc(outputs)
        return model


model = Seq2Seq().to(device)
criterion = nn.CrossEntropyLoss().to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)

for epoch in range(5000):
    for enc_input_batch, dec_input_batch, dec_output_batch in loader:
        h_0 = torch.zeros(1, batch_size, n_hidden).to(device)

        (enc_input_batch, dec_intput_batch, dec_output_batch) = (
        enc_input_batch.to(device), dec_input_batch.to(device), dec_output_batch.to(device))

        pred = model(enc_input_batch, h_0, dec_intput_batch)

        pred = pred.transpose(0, 1)
        loss = 0
        for i in range(len(dec_output_batch)):
            loss += criterion(pred[i], dec_output_batch[i])
        if (epoch + 1) % 1000 == 0:
            print('Epoch:', '%04d' % (epoch + 1), 'cost =', '{:.6f}'.format(loss))

        optimizer.zero_grad()
        loss.backward()
        optimizer.step()


# Test
def translate(word):
    enc_input, dec_input, _ = make_data([[word, '?' * n_step]])
    enc_input, dec_input = enc_input.to(device), dec_input.to(device)
    hidden = torch.zeros(1, 1, n_hidden).to(device)
    output = model(enc_input, hidden, dec_input)


    predict = output.data.max(2, keepdim=True)[1]
    decoded = [letter[i] for i in predict]
    translated = ''.join(decoded[:decoded.index('E')])

    return translated.replace('?', '')


print('test')
print('man ->', translate('man'))
print('mans ->', translate('mans'))
print('king ->', translate('king'))
print('black ->', translate('black'))
print('up ->', translate('up'))

在这里插入图片描述

4、简单总结nn.RNNCell、nn.RNN

nn.RNNCell可以看作是RNN的基础构成单元,它可以接受序列中单步的输入,且必须传入隐藏状态。对于序列中的每个步骤,它都会单独进行计算,并输出该步骤的隐藏状态。这种方式需要手动写循环来处理序列数据的每一个步骤。
nn.RNN则可以接受一个序列的输入,它默认会传入全0的隐藏状态,也可以自定义隐藏状态传入。与nn.RNNCell不同,nn.RNN的设计使得用户不需要手动写循环来处理序列数据的每一个步骤,这在实际应用中更为方便。
总结来说,nn.RNN和nn.RNNCell的区别在于处理序列数据的方式,nn.RNNCell需要手动写循环,而nn.RNN则可以自动处理整个序列。
在这里插入图片描述

5、谈一谈对“序列”、“序列到序列”的理解

序列:一串按照特定顺序排列的数据元素,比如一串数字、一串字母或者一串汉字。
序列到序列:一种深度学习模型,通常用于将一个序列转化为另一个序列。
序列到序列分为两种:同步的序列到序列模式,异步的序列到序列模式。
同步的序列到序列模式:主要用于序列标注任务(每一时刻都有输入和输出,输入序列和输出序列的长度相同)。
同步的序列到序列模式

异步的序列到序列模式(编码器-解码器):输入序列和输出序列不需要有严格的对应关系,也不需要保持相同的长度。
异步的序列到序列模式

6、总结本周理论课和作业,写心得体会

循环神经网络

  • 具有短期记忆能力
  • 神经元可接受其他神经元信息,也可接受自身信息,形成又换路的网络结构
  • 和前馈神经网络相比,更符合生物神经网络结构
  • 已广泛应用在语音识别、语言模型、自然语言生成等任务上
  • 容易扩展到更广义的记忆网络模型:递归神经网络、图网络

给网络增强短期记忆力的方法

  1. 延时神经网络(在前馈网络中的非输出层都添加一个延时器
  2. 有外部输入的非线性自回归模型(用变量 y t y_t yt历史信息来预测自己)
  3. 循环神经网络(通过使用带自反馈的神经元)

简单循环网络(SRN):只有一个隐藏层的神经单元
z t = U h t − 1 + W x t + b z_t=Uh_{t-1}+Wx_t+b zt=Uht1+Wxt+b
在这里插入图片描述

完全连接的循环网络,其输入为 x t x_t xt,输出为 y t y_t yt
状态更新:
h t = f ( U h t − 1 + W x t + b ) h_t=f(Uh_{t-1}+Wx_t+b) ht=f(Uht1+Wxt+b)
y t = V h t y_t=Vh_t yt=Vht
其中 h h h为隐状态, f ( ⋅ ) f(·) f()为非线性激活函数, U 、 W 、 b U、W、b UWb V V V为网络参数
在这里插入图片描述在这里插入图片描述

序列到类别:主要用于序列分类问题,输入为序列,输出为类别
在这里插入图片描述

同步的序列到序列模式:主要用于序列标注任务,每一时刻都有输入和输出,输入序列和输出序列的长度相同。
在这里插入图片描述

异步的序列到序列模式:编码器-解码器模型,输入序列和输出序列不需要有严格的对应关系,也不需要保持相同的长度。
在这里插入图片描述
编码器-解码器
心得体会
在实现SRN的过程中,我首先使用了Numpy来实现。通过编写自定义的循环,我创建了简单的神经网络,并用Numpy来执行计算。虽然这种方法很直观,但是效率较低。
在基础上增加了激活函数tanh之后,我发现这增加了模型的表达能力。tanh函数是一种常用的激活函数,它可以增加模型的非线性表达能力。
然后,我使用了PyTorch的nn.RNNCell和RNN来实现SRN。我发现这比使用Numpy更加高效。
在实现“序列到序列”的过程中,我学习了如何使用编码器和解码器来构建一个简单的机器翻译模型。编码器将输入序列转换成一个上下文向量,而解码器则根据这个上下文向量生成输出序列。
nn.RNNCell和nn.RNN是PyTorch中用于实现循环神经网络的两个重要类。nn.RNNCell提供了一个基础的RNN单元,可以用于构建更复杂的模型。而nn.RNN则提供了一个高级的接口,可以方便地构建和训练RNN模型。这两个类都可以用于实现SRN和“编码器-解码器”等任务。
在这里插入图片描述

参考链接:
【深度学习】动手学深度学习——编码器-解码器_深度学习 编码器和解码器_岁月漫长_的博客-CSDN博客

【23-24 秋学期】NNDL 作业9 RNN - SRN-CSDN博客
Seq2Seq的PyTorch实现 - mathor
《PyTorch深度学习实践》完结合集_哔哩哔哩_bilibili
完全图解RNN、RNN变体、Seq2Seq、Attention机制 - 知乎

  • 23
    点赞
  • 21
    收藏
    觉得还不错? 一键收藏
  • 4
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值