对抗性神经结构网络——Adv-NSL量化交易模型实现

        对抗性神经结构网络(Adversarial Neural Structure Learning,简称Adv-NSL)是一种基于对抗性学习的神经网络结构学习方法。在神经结构学习中,目标是自动地学习神经网络的拓扑结构,即网络中的层次、连接方式等。对抗性学习则是一种学习策略,通过在训练过程中引入对抗性的扰动来增强模型的鲁棒性和泛化能力。

        Adv-NSL的主要思想是通过对抗性训练来学习神经网络的结构,使得学到的网络在输入数据发生变化或存在噪声时能够保持良好的性能。这种方法通常会涉及到对抗性攻击和对抗性训练,以增强网络的鲁棒性,使其对于不同类型的输入都能够产生稳定的输出。

接下来话不多说,让我们一起搭建!

记得先导入TensorFlow库: 

        import tensorflow as tf

(一). 定义邻域结构学习层

class NeighborhoodStructureLayer(tf.keras.layers.Layer):
    def __init__(self, units, activation='relu'):
        super(NeighborhoodStructureLayer, self).__init__()
        self.units = units
        self.activation = tf.keras.activations.get(activation)

    def build(self, input_shape):
        self.kernel = self.add_weight("kernel", shape=[int(input_shape[-1]), self.units])
        self.bias = self.add_weight("bias", shape=[self.units])

    def call(self, inputs):
        output = tf.matmul(inputs, self.kernel) + self.bias
        return self.activation(output)

    def compute_output_shape(self, input_shape):
        return input_shape[:-1] + (self.units,)

  NeighborhoodStructureLayer 类:这是一个自定义的神经网络层,用于学习输入数据的邻域结构。在构建时,它会创建一个权重矩阵 kernel 和一个偏置向量 bias,然后在调用 call 方法时执行矩阵乘法运算并添加偏置,最后应用激活函数。

(二). 定义对抗性训练层

class AdversarialTrainingLayer(tf.keras.layers.Layer):
    def __init__(self, epsilon=0.1):
        super(AdversarialTrainingLayer, self).__init__()
        self.epsilon = epsilon

    def call(self, inputs):
        # 生成对抗性扰动
        adversarial_noise = tf.random.uniform(tf.shape(inputs), -self.epsilon, self.epsilon)
        # 向输入数据中添加对抗性扰动
        adversarial_inputs = inputs + adversarial_noise
        return adversarial_inputs
    
    def compute_output_shape(self, input_shape):
        return input_shape

   AdversarialTrainingLayer 类:这是另一个自定义的神经网络层,用于实现对抗性训练。在每次调用 call 方法时,它会生成一个服从均匀分布的对抗性扰动,并将其添加到输入数据中。

(三).定义模型搭建函数

def model(x,y):
    # 数据预处理:标准化特征数据
    scaler = StandardScaler()
    scaled_features = scaler.fit_transform(x)

    # 划分训练集和测试集
    X_train, X_test, y_train, y_test = train_test_split(scaled_features, y, test_size=0.2, random_state=42)

    # 构建模型
    model = tf.keras.Sequential([  # 具体参数可自行调整
        # 邻域结构学习层
        NeighborhoodStructureLayer(32, activation='relu'),
        # Dropout层
        tf.keras.layers.Dropout(0.2),
        # 对抗性训练层
        AdversarialTrainingLayer(),
        # 邻域结构学习层
        NeighborhoodStructureLayer(32, activation='relu'),
        # Dropout层
        tf.keras.layers.Dropout(0.2),
        # 对抗性训练层
        AdversarialTrainingLayer(),
        # 扁平层
        tf.keras.layers.Flatten(),
        # 全连接层
        tf.keras.layers.Dense(4, activation='relu'),
        # 输出层
        tf.keras.layers.Dense(1, activation='tanh')
    ])
    # 编译模型
    model.compile(optimizer='sgd',
                  loss='binary_crossentropy',
                  metrics=['accuracy'])  # 具体参数可自行调整
    # 训练模型
    model.fit(X_train, y_train, epochs=70, batch_size=2)
    return model

那最终到这里就算大功告成了,感兴趣的朋友赶快去实验吧!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值