目录
设置使用0号GPU卡(如无GPU,执行此代码后仍然会使用CPU训练模型)
思路来源:在课上学习了通过YOLO检测药瓶来进行质检,于是我想到了在当今许多土建工程中,佩戴安全帽可以有效降低危险的发生,但是部分工人安全意识淡薄,需要监督,因此我想到可以通过YOLO算法来识别安全帽,监测监控数据即可进行安全监督,极大的节约了成本,同时可以有效敦促工人佩戴安全帽,提升安全意识。
教程目的: 通过PaddleDetection API熟悉经典的目标检测框架,为下一步自己手写实现目标检测网络打基础
教程内容: 以PaddleDetection API中的特色模型为例,介绍网络结构,以及如何使用此框架训练自己的数据集
数据准备: 本教程基于易华录开发者社区的人体摔倒姿态检测数据实现了摔倒检测模型的训练。
PaddelDetection: 为方便读者体验,存放在PaddleDetection。
现在来对代码的整体目录做一个介绍:
├── data:主要是存放一些超参数的配置文件(这些文件(yaml文件)是用来配置训练集和测试集还有验证集的路径的,其中还包括目标检测的种类数和种类的名称);还有一些官方提供测试的图片。如果是训练自己的数据集的话,那么就需要修改其中的yaml文件。但是自己的数据集不建议放在这个路径