基于YOLOV5实现安全帽检测

本文介绍了基于PaddleDetection框架使用YOLOV5模型实现安全帽检测的过程,包括数据准备、模型训练、评估和预测,旨在熟悉目标检测并为后续自定义网络打基础。
摘要由CSDN通过智能技术生成

目录

安装paddlex

配置GPU

设置使用0号GPU卡(如无GPU,执行此代码后仍然会使用CPU训练模型)

模型评估

模型预测

结果可视化


思路来源:在课上学习了通过YOLO检测药瓶来进行质检,于是我想到了在当今许多土建工程中,佩戴安全帽可以有效降低危险的发生,但是部分工人安全意识淡薄,需要监督,因此我想到可以通过YOLO算法来识别安全帽,监测监控数据即可进行安全监督,极大的节约了成本,同时可以有效敦促工人佩戴安全帽,提升安全意识。

教程目的: 通过PaddleDetection API熟悉经典的目标检测框架,为下一步自己手写实现目标检测网络打基础

教程内容: 以PaddleDetection API中的特色模型为例,介绍网络结构,以及如何使用此框架训练自己的数据集

数据准备: 本教程基于易华录开发者社区的人体摔倒姿态检测数据实现了摔倒检测模型的训练。

PaddelDetection: 为方便读者体验,存放在PaddleDetection。

现在来对代码的整体目录做一个介绍:

├── data:主要是存放一些超参数的配置文件(这些文件(yaml文件)是用来配置训练集和测试集还有验证集的路径的,其中还包括目标检测的种类数和种类的名称);还有一些官方提供测试的图片。如果是训练自己的数据集的话,那么就需要修改其中的yaml文件。但是自己的数据集不建议放在这个路径

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

人工智能_SYBH

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值