机器学习之重要迭代算法梯度下降法

  • 1、梯度:梯度是导数对多元函数的推广,它是多元函数对各个自变量偏导数形成的向量。
    在这里插入图片描述
    • 一元函数 f ( x ) = 3 x 2 + 6 x f(x)=3x^2+6x f(x)=3x2+6x,它的导数(梯度)为 ▽ f ( x ) = f ′ ( x ) = 6 x + 6 ▽f(x)=f^{'}(x)=6x+6 f(x)=f(x)=6x+6,当梯度为0时, x = − 1 x=-1 x=1为极值点;
    • 多元函数 f ( x , y ) = x 2 − 2 x 2 y + y 2 f(x,y)=x^2-2x^2y+y^2 f(x,y)=x22x2y+y2,对其x和y分别求偏导形成向量为 ▽ f ( x , y ) = f ′ ( x , y ) = ( 2 x − 4 x y , 2 y − 2 x 2 y ) T ▽f(x,y)=f^{'}(x,y)=(2x-4xy,2y-2x^2y)^T f(x,y)=f(x,y)=(2x4xy,2y2x2y)T,梯度为0时,极值点为(0,0)或(1,1/2)或(-1,1/2)。
  • 2、Hessian矩阵:虽然找到了极值点,但我们不知道它是极大值点还是极小值点,因此这里引入Hessian矩阵(二阶倒数),判断依据:如果Hessian矩阵正定,函数有极小值;如果Hessian矩阵负定,函数有极大值;如果Hessian矩阵不定,则不是极值点(鞍点);正定矩阵的判定参考:这里
    在这里插入图片描述
  • 还是多元函数 f ( x , y ) = x 2 − 2 x 2 y + y 2 f(x,y)=x^2-2x^2y+y^2 f(x,y)=x22x2y+y2,对其x和y分别求偏导形成向量为 ▽ f ( x , y ) = f ′ ( x , y ) = ( 2 x − 4 x y , 2 y − 2 x 2 y ) T ▽f(x,y)=f^{'}(x,y)=(2x-4xy,2y-2x^2y)^T f(x,y)=f(x,y)=(2x4xy,2y2x2y)T,梯度为0时,极值点为(0,0)或(1,1/2)或(-1,1/2)。Hessian矩阵为
    [ 2 x y − 4 x − 4 x y 2 − 2 x 2 ] \begin{bmatrix} 2xy&-4x\\ -4xy&2-2x^2\\ \end{bmatrix} [2xy4xy
  • 1
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值