一阶非齐次线性微分方程特点总结

1. 一阶非齐次线性微分方程的标准形式

方程的一般表达式为:

\frac{dy}{dx}+P(x)y=Q(x),

其中:

  • P(x) 和 Q(x) 是仅关于自变量 xx的已知连续函数,

  • Q(x)≠0 时称为非齐次项(外部驱动项)。Q(x)=0时就是齐次方程。

  • 齐次:方程右边为零,系统仅由自身性质驱动。

  • 非齐次:方程右边非零,存在外部驱动项,解是“自身响应”和“外部驱动响应”的叠加。

  • 线性:线性微分方程的“线性”是指方程中未知函数 y及其导数(如 y′,y′′ 等)的项均是一次项,且没有以下非线性成分非线性组合:例如y^2,y\cdot y^{\prime},\sin y等。高阶幂次:例如 (y^{\prime})^3,e^y 等。


2. 积分因子法的统一通解公式

步骤与公式

  1. 积分因子:构造\mu(x)=e^{\int P(x)dx}(积分时不加常数)。

  2. 方程变形:将方程两边乘以 μ(x),得到:\frac{d}{dx}\left[\mu(x)y\right]=\mu(x)Q(x).

  3. 积分求解:对两边积分,得到通解:y=\left.\frac{C}{\mu(x)}\right.+\frac{1}{\mu(x)}\int\mu(x)Q(x)dx.

通解结构

y=y_h+y_p=C\cdot e^{-\int P(x)dx}+e^{-\int P(x)dx}\int Q(x)e^{\int P(x)dx}dx.


3. 公式的一致性说明

看似不一致的根源
在不同的表达中,通解可能以不同形式呈现,但本质相同。例如:

  • 紧凑形式

y=\frac{1}{\mu(x)}\left(\int\mu(x)Q(x)dx+C\right).

  • 展开形式

y=\underbrace{C\cdot e^{-\int P(x)dx}}_{y_h}+\underbrace{e^{-\int P(x)dx}\int Q(x)e^{\int P(x)dx}dx}_{y_p}.

两种形式等价,仅因书写方式不同。展开形式明确分离了齐次解 yh和特解 yp​。


4. 特解与齐次解的显式分离

以方程y^{\prime}+2xy=3x为例:

  1. 积分因子\mu(x)=e^{\int2xdx}=e^{x^2}

  2. 通解公式

    y=e^{-x^2}\left(\int3xe^{x^2}dx+C\right).
  3. 积分结果

    \int3xe^{x^2}dx=\frac{3}{2}e^{x^2}\quad(积分时省略常数)
  4. 通解表达式

    y=\underbrace{Ce^{-x^2}}_{y_h}+\underbrace{\frac{3}{2}}_{y_p}.
    • 特解y_p=\frac{3}{2}:对应 C=0 时的解。

    • 齐次解y_h=Ce^{-x^2}:对应齐次方程 y^{\prime}+2xy=0 的解。


5. 关键疑问解答

① 为什么积分时不加常数?

  • 特解只需一个具体解,积分时省略常数后,通解中的任意常数 C 已涵盖所有可能的齐次解。

  • 若添加积分常数 K,则通解变为:

y=\frac{K+C}{\mu(x)}+\frac{1}{\mu(x)}\int\mu(x)Q(x)dx,

合并后仍等价于 C′=K+C,因此无需重复引入。

② 通解形式是否矛盾?

  • 不矛盾。紧凑形式与展开形式是同一公式的不同书写方式。例如:

y=\frac{1}{\mu(x)}\left(\int\mu(x)Q(x)dx+C\right)=\frac{C}{\mu(x)}+\frac{1}{\mu(x)}\int\mu(x)Q(x)dx.

  • 第一项为齐次解,第二项为特解。


总结

  • 一般表达式y^{\prime}+P(x)y=Q(x)

  • 积分因子法公式

    y=e^{-\int P(x)dx}\left(\int Q(x)e^{\int P(x)dx}dx+C\right).
  • 解的结构

    • 齐次解 y_h=Ce^{-\int P(x)dx}

    • 特解 y_p=e^{-\int P(x)dx}\int Q(x)e^{\int P(x)dx}dx

  • 一致性:所有形式最终等价,差异仅为表达式展开与否。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

黄昏ivi

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值