1. 一阶非齐次线性微分方程的标准形式
方程的一般表达式为:
其中:
-
P(x) 和 Q(x) 是仅关于自变量 xx的已知连续函数,
-
Q(x)≠0 时称为非齐次项(外部驱动项)。Q(x)=0时就是齐次方程。
-
齐次:方程右边为零,系统仅由自身性质驱动。
-
非齐次:方程右边非零,存在外部驱动项,解是“自身响应”和“外部驱动响应”的叠加。
-
线性:线性微分方程的“线性”是指方程中未知函数 y及其导数(如 y′,y′′ 等)的项均是一次项,且没有以下非线性成分:非线性组合:例如
等。高阶幂次:例如
等。
2. 积分因子法的统一通解公式
步骤与公式:
-
积分因子:构造
(积分时不加常数)。
-
方程变形:将方程两边乘以 μ(x),得到:
-
积分求解:对两边积分,得到通解:
通解结构:
3. 公式的一致性说明
看似不一致的根源:
在不同的表达中,通解可能以不同形式呈现,但本质相同。例如:
-
紧凑形式:
-
展开形式:
两种形式等价,仅因书写方式不同。展开形式明确分离了齐次解 yh和特解 yp。
4. 特解与齐次解的显式分离
以方程为例:
-
积分因子:
-
通解公式:
-
积分结果:
(积分时省略常数)
-
通解表达式:
-
特解
:对应 C=0 时的解。
-
齐次解
:对应齐次方程
的解。
-
5. 关键疑问解答
① 为什么积分时不加常数?
-
特解只需一个具体解,积分时省略常数后,通解中的任意常数 C 已涵盖所有可能的齐次解。
-
若添加积分常数 K,则通解变为:
合并后仍等价于 C′=K+C,因此无需重复引入。
② 通解形式是否矛盾?
-
不矛盾。紧凑形式与展开形式是同一公式的不同书写方式。例如:
-
第一项为齐次解,第二项为特解。
总结
-
一般表达式:
。
-
积分因子法公式:
-
解的结构:
-
齐次解
,
-
特解
。
-
-
一致性:所有形式最终等价,差异仅为表达式展开与否。