一、研究意义
1. 理论意义
随着智能交通系统的迅速发展,车辆识别技术的重要性愈发凸显。基于稀疏表达与数据驱动的车辆识别方法,通过对车辆图像数据的深度挖掘,能够有效提高识别精度和处理速度,具有显著的理论意义与实际应用价值。从理论层面来看,该研究拓展了稀疏表达在图像识别领域的应用,为相关算法的设计与优化提供了新思路。此外,通过探索数据驱动的识别策略,为后续相关研究奠定了坚实的基础,推动了车辆识别理论的发展。
2.实际意义
车辆识别技术在智能交通、安防监控、车联网等多个领域具有广泛应用。通过提高车辆识别的准确性和效率,不仅有助于提升交通管理水平,减少交通事故,还能为智能停车、城市管理等提供技术支持,促进社会资源的优化配置。研究成果能够为企业在汽车工业及相关技术领域的产品研发提供理论指导,增强市场竞争力。因此,基于稀疏表达与数据驱动的车辆识别方法的研究,既具有重要的理论价值,也具有显著的实践意义,为未来智能交通及其他相关领域的发展作出积极贡献。本文研究是为了解决鑫源汽车公司对准确识别各车型的方法研究。为了提高生产效率,通过结合数据驱动与稀疏表达,得出利用稀疏表达高识别准确率的有效策略。本研究能够提高车辆识别的准确性与效率,加快鑫源汽车的生产速度,降低劳动力,节约成本。识别类型如图:
| | | | |
528 | 529 | dahu | g01 | x301 |
图1-1 鑫源汽车模型
图1-2 人工识别与智能识别
二、文献综述
1. 理论的渊源及演进过程
稀疏编码的起源可以追溯到19世纪的数学家和物理学家的研究。在19世纪80年代,法国数学家阿尔弗雷德·卢梭(Alphonse de Lambert)在研究天体运动时,提出了一种用于处理稀疏数据的编码技术,即稀疏编码,随着技术的发展,刘宝弟稀疏表达(Sparse Representation, SR)算法,在计算机视觉、模式识别和人工智能等研究领域中具有极其重要的理论与应用价值[1]。1993 年,Mallat 基于小波分析提出了信号可以用一个超完备字典进行表示,开启了稀疏表示的先河。他提出的匹配追踪算法(Matching Pursuit, MP)是最早的稀疏分解算法,为后续的研究奠定了基础。该算法是一个迭代算法,简单且易于实现,使得稀疏表示的概念和方法开始受到关注。在 MP 算法的基础上,Pati 等人提出了正交匹配追踪算法(Orthogonal Matching Pursuit, OMP),其收敛速度更快,进一步提高了稀疏分解的效率。此后,学者们又提出了各种不同的改进算法,如压缩采样匹配追踪(Conpressive Sampling Matching Pursuit, CoSaMP)算法、正则化正交匹配追踪(Regularized Orthogonal Matching Pursuit, ROMP)算法、分段式正交匹配追踪(Stagewise OMP, StOMP)算法、子空间追踪(Subspace Pursuit, SP)算法等,不断优化稀疏分解的性能和效果。早期在稀疏表示研究领域,一般假定字典已知,仅求解未知稀疏向量。1999 年,Engan 提出了最优方向(Method Of Optimal Directions, MOD)算法,这是学习字典的鼻祖,但它的收敛速度很慢。随后,一些研究人员在 MOD 算法的基础上,提出了其他的字典学习算法,如 FOCUSS 字典学习算法、广义 PCA(Generalized PCA)算法等。2006 年,Micheal Elad 提出了基于超完备字典稀疏分解的 K-SVD 算法,该算法相较于 MOD 算法,收敛速度有了很大的提高,在图像处理等领域得到了广泛应用。
此外,数据驱动的方法通过大量的数据学习和模型训练,能够自动适应不同的场景和条件,提升车辆识别的准确性与鲁棒性。近年来,随着深度学习的崛起,基于深度学习的车辆识别方法不断涌现,展现出强大的特征学习和表示能力,使得车辆识别技术逐渐从传统的手工特征提取向自学习、自适应的方向发展。
在车辆识别及其相关领域,孙昌璞.物理学求美至真的方法论——从科学可证伪性到奥卡姆剃刀原则的应用逐渐受到重视,为车辆识别中的方法选择提供了理论支持,在选择合适的算法模型时,强调了方法的简洁性与有效性[2],张琼杨(2021)奥卡姆剃刀英格兰逻辑学家威廉提出著名奥卡姆剃刀理论:“如无必要,勿增实体”[3]陈斯允等(2023)则在包装设计中探讨了繁简设计对产品效能判断的影响,其研究结果可以借鉴到车辆识别系统的设计中,促进设计简化并提高识别性能[4]。张寄冀(2023)则深入研究了规律性因果结构推理与奥卡姆剃刀的关系,为车辆识别算法的优化提供了理论指引[5]。此类研究展示了简化设计在复杂系统中的重要性,从而为后续的车辆识别研究提供了启示。这些理论依据不仅为车辆识别提供了方法论指导,也拓展了对相关技术应用的理解。
2.国内研究现状
近年来,稀疏表达在图像处理领域得到了广泛的关注,尤其是在图像分类和人脸识别等任务上。黄强(2021)在其研究中提出了一种基于稀疏表示的鲁棒性人脸识别方法,通过优化稀疏模型来提高识别率,此研究为后续的车辆识别提供了重要的理论基础[6]。蒋志杰(2019)则聚焦于遮挡人脸识别,设计了一种面向遮挡人脸识别的稀疏表达鲁棒性算法,显著提高了识别的准确性和抗干扰能力,这为车辆识别中处理复杂场景的挑战提供了新的思路[7]。孙婕随着现代化医院管理模式的不断发展,智能化管理已成为趋势。人脸识别技术的应用可以实现手术室的智能化管理,提高医院的管理效率和工作水平[8]。南方舟等(2018)则提出了基于稀疏表达的OBS去噪方法,探讨了稀疏表达在图像去噪中的应用,为图像识别任务提供了清晰的信号和背景[9]。郑丽君图像是人们获取信息的一种重要方式,但是噪声的存在会影响图像质量以及后续处理,因此,对图像去噪方法的研究有着重要意义[10]。此外,王静(2011)研究了基于稀疏表达的人脸识别算法,构建了有效的分类器,为实际应用中的车辆识别奠定了基础,显示出稀疏表示在特征提取方面的重要性[11]。龚永罡(2011)的研究聚焦于基于局部HOG特征的稀疏表达车牌识别算法,这进一步推动了稀疏表达在交通管理领域的应用进展[12]。
随着深度学习技术的发展,其与稀疏表达结合的研究越来越多,成为提高车辆识别效果的一个重要方向。刘瑞明等(2023)的研究集中在基于深度残差网络模型压缩的局部遮挡人脸识别,提出了结合深度学习与稀疏表达的方法,有效提高了在复杂条件下的识别能力,为车辆识别技术的提升提供了经验借鉴[13]。李人杰(2020)的研究则聚焦于基于稀疏表达的视觉追踪,探讨了如何通过稀疏表示来实现有效的物体追踪,这为后续车辆识别算法的实时性提供了理论基础[14]。林志凯(2019)的研究也专注于基于自适应稀疏表达的图像识别,进一步丰富了深度学习与稀疏表达结合的理论框架,为车辆动态监测提供了可操作的技术路径[15]。崔晓萍(2016)关于基于稀疏表达的图像自动标注以及[16]崔晓萍(2017)关于基于稀疏表达的图像自动标注算法的研究[17],展示了稀疏表达在图像处理中的多样性应用,为车辆识别中的特征提取提供了额外的理论支持。蔡家柱基于稀疏表达的人脸识别是近年来热门的研究课题,其简单的算法框架、对特征选取的不敏感和较强的鲁棒性受到国内外研究学者的关注。尽管基于稀疏表达的人脸识别涌现出了大量的研究成果,但如何提高复杂环境下的识别精度是仍然需要解决的问题[18]。这些研究表明,通过深度学习与稀疏表达的结合,车辆识别的精度和效率都有了显著提高,未来的研究可在此基础上进一步探索新的算法。综合以上对国内外研究文献的归纳与分析,目前国内外学者对基于稀疏表达和数据驱动的车辆识别方法的研究集中于算法精度提升、实时性优化及应用场景拓展等方面。在这些领域取得了丰富的研究成果,从理论模型设计、特征提取方法、数据集构建等角度研究了车辆识别中的关键问题,为该领域的发展提供了丰富的理论基础与实践经验。国内学者大部分赞同稀疏表达在高维数据处理中的有效性与优势,认为要发展车辆识别技术需要从数据集的多样性、算法的适应性、实时处理能力等方面切入。国外学者的研究则主要集中在深度学习与稀疏编码结合上的创新,认为数据驱动方法能有效提高识别率,强调算法模型的可解释性与鲁棒性。虽然国内外学者研究的角度有所不同,呈现了多元化的局势,但总体来说,研究集中于智能交通领域和安全监控领域,在实践研究方面也集中于自动驾驶和城市交通管理的具体案例,并与汽车制造、城市规划等群体进行了大量研究。相对来说,国内外针对车辆识别问题的事件研究,其所研究的案例类型、行业类型和人群类型都在智能交通方面比较多,而在农村地区和非机动车辆的识别研究则比较少。国内外学者对稀疏表达、数据驱动方法和车辆识别技术的研究,为理论的发展提供了丰富的基础,也在智能交通、车辆监控等行业及不同人群的实践方面提供了大量的案例研究参照,对车辆识别的理论和实践发展起到了重要的推动作用,同时也是本文进行有关案例研究的理论参考和对策参照。
3.有待解决的问题
苏振明.在信息技术迅猛发展的今天,图像对人们的日常社会生活,工业生产以及科学研究产生了极大的影响[19]。随着人工智能大量的普遍应用,国内汽车企业也在不断地升级改造,鑫源汽车也在引入人工智能,来提高自己的生产效率,减少人工参与,降低成本,但在实际生产中,依然存在识别准确率低的问题。并基于稀疏表达理论提出优化的车辆识别算法。具体目标包括:通过对现有车辆识别系统的分析,识别出主要的影响因素,如图像质量、光照条件和车辆外观等。结合数据驱动理论,探讨如何通过稀疏编码技术提升识别的准确率和鲁棒性。提出针对车辆识别问题,旨在为智能交通系统的优化提供理论支持和实践指导。
4.本人对所查文献的评述
在对车辆识别及相关领域的文献进行调研时,本人注意到稀疏表达作为一种有效的特征提取方法,已被广泛应用于图像处理与识别中。孙昌璞(2024)在其研究中强调了物理学方法论的科学性,这为稀疏编码在车辆识别中的应用提供了理论支持[2]。孙婕等(2024)则利用人脸识别技术的设计,展示了数据驱动方法在实际应用中的可行性,表明车辆识别可以借鉴其技术架构[8]。
张寄冀(2023)研究了规律性因果结构推理,这与稀疏表达在处理复杂识别任务中的优势不谋而合[5]。小桥流水正则化(Regularization)是一种在机器学习和深度学习算法中用于防止过拟合、提高模型泛化能力的技术手段,L1正则化适用于稀疏模型,引导模型关注能够计算稀疏模型的绝对值总和,从而防止过度拟合,提高模型的泛化能力[20]。刘瑞明等(2023)探讨了深度残差网络在局部遮挡人脸识别中的应用,进一步验证了深度学习与稀疏表达结合的有效性[13]。
此外,黄强(2021)的工作专注于鲁棒性人脸识别,为环境复杂、条件不确定的车辆识别提供了重要的参考[6]。李人杰(2020)和林志凯(2019)的研究通过自适应稀疏表达,揭示了图像识别过程中的关键特征提取方法,进一步拓展了该领域的研究视角[14][15]。
综合以上文献,本人认为,稀疏表达与数据驱动相结合的车辆识别研究具有广阔的前景,但仍需不断深化理论探索与技术创新,以解决现存的问题。
三、课题研究内容与方法
1. 课题研究内容
1.1 数据预处理
在信息技术迅猛发展的今天,图像已经成为人们的日常社会生活,工业生产以及科学研究的关键点。而获得清晰和高分辨率图像不仅能为人们的分析和决策提供依据,也可以作为进一步计算机图像理解与识别的基础。我在鑫源汽车实地采集了不同类型的汽车图像,为确保能够准确识别,需要对图像进行整合分类、去噪处理、灰度化。
1.2 数据驱动
通过对数据驱动车辆识别算法的综合分析,分析当前技术的现状及其成因,探讨不同因素对车辆识别性能的影响程度。基于研究结果,提出相应的对策,包括算法优化、数据集扩充和模型训练策略等,以期为实际应用中的车辆识别系统提供有效的解决方案。
1.3 稀疏表达
其哲理是英格兰逻辑学家威廉提出著名奥卡姆剃刀理论:“如无必要,勿增实体”,如果同一个现象有20*20的2值度图就有2400种可能,比宇宙中的原子次数还多,最简单的那个便是最正确的,而具体的稀疏表达则是在海量数据中找到精准的目标,如图所示:
图3-1 稀疏表达
1.4 结果展示
为了实现对车辆的准确识别,需要运用Python库--stream lit的交互功能,对数据的输入、调控,以及参数的调整,来实现对模型的训练和优化。
2. 课题研究方法
图3-2 流程图
2.1数据采集
运用固定照相设备,对车辆图片进行采集。
2.2 数据驱动
利用数据驱动的方法收集和处理大量车辆图像数据。这一过程包括数据预处理、图像增强和特征提取,以便为后续的稀疏编码提供有效的输入数据。在图像预处理阶段,采用归一化和去噪技术,以提高图像质量,确保特征提取的有效性。
2.3 L1正则
正则化(Regularization)是一种在机器学习和深度学习算法中用于防止过拟合、提高模型泛化能力的技术手段,L1正则化适用于稀疏模型,引导模型关注能够计算稀疏模型的绝对值总和,从而防止过度拟合,提高模型的泛化能力。
2.4 优化模型
收集大量鑫源车辆图像数据。利用OpenCV对图像进行灰度化处理,节省图像的内存,在视觉上突出车辆图片目标区域与图像特征,再进行滤波去噪,以便为后续的稀疏编码提供有效的输入数据。在图像预处理阶段,采用灰度化和去噪技术,以提高图像质量,确保特征提取的有效性。
稀疏编码技术在特征表示中发挥关键作用,通过将车辆图像表示为稀疏线性组合的方式,大幅减少了计算复杂度。在实现稀疏表达时,采用字典学习算法,自动生成适应于交通环境的字典,以提高模型的表示能力。通过引入正则化方法,进一步增强了稀疏编码的鲁棒性,使得模型能够抵御噪声和遮挡干扰。
稀疏表达在模式识别中具有极其重大的作用,为了众多数据中,找到已知图片的种类。公式如下:
min|S| 1subject to AS=XTEST (3-1)
其中,A是数据集,S是对数据集进行稀疏表达并应用L1正则化,X则是新上传的图片,如下图所示:
图3-3 稀疏表达的公式解释
A是一个大数据集,包括了9种不同类型的车辆,图中Xtest,S是属于数据集A中的一个类型,为了找到Xtest是属于哪一种,需要对S进行稀疏以及L1正则化得到min|S|1,除了需要的车辆类型外,其他的全部进行稀疏处理变为零,subject to AS,最终得到Xtest的类型。
四、参考文献
[1]刘宝弟,刘伟锋,王延江,齐玉娟,王武礼.中国石油大学,基于深度稀疏表达算法的图像分类方法研究[Z].项目立项编号:ZR2014FQ001.鉴定单位:山东省自然科学基金委.鉴定日期:2017-12-01.
[2]孙昌璞.物理学求美至真的方法论——从科学可证伪性到奥卡姆剃刀原则[J].科技导报,2024,42(10):46-54.
[3]张琼杨.奥卡姆剃刀[J].农村青少年科学探究,2021,(04):36-39.
[4]陈斯允,肖婷文,熊继伟,彭凯平.包装中的“奥卡姆剃刀定律”:繁简设计对产品效能判断的影响[J].心理学报,2023,55(11):1872-1888.
[5]张寄冀.规律性因果结构推理与奥卡姆剃刀[J].社会科学文摘,2023,(12):15-17.
[6]黄强.基于稀疏表示的鲁棒性人脸识别研究[D].导师:米建勋.重庆邮电大学,2021.
[7]蒋志杰.面向遮挡人脸识别的稀疏表达鲁棒性算法[D].导师:雷大江.重庆邮电大学,2019.
[8]孙婕,王泽阳,张玉洁.手术室人脸识别与确认系统设计与实现[J].中国新技术新产品,2024,(03):12-14.
[9]南方舟,徐亚,刘伟,刘丽华,郝天珧,游庆瑜.基于稀疏表达的OBS去噪方法[J].地球物理学报,2018,61(04):1519-1528.
[10]郑丽君.基于稀疏表达的图像去噪方法研究[D].导师:高清维.安徽大学,2015.
[11]王静.基于稀疏表达的人脸识别算法研究[D].导师:郭成安.大连理工大学,2011.
[12]龚永罡.基于局部HOG特征的稀疏表达车牌识别算法[J].计算机仿真,2011,28(04):367-369+407.
[13]刘瑞明,徐春融,周韬,陈伦奥.基于深度残差网络模型压缩的局部遮挡人脸识别[J].智能计算机与应用,2023,13(11):244-249.
[14]李人杰.基于稀疏表达的视觉追踪研究[D].导师:刘群.重庆邮电大学,2020.
[15]林志凯.基于自适应稀疏表达的图像识别研究[D].导师:米建勋.重庆邮电大学,2019.
[16]崔晓萍,刘丽,周家琪,李方方.基于稀疏表达的图像自动标注[J].山东师范大学学报(自然科学版),2016,31(03):21-27.
[17]崔晓萍.基于稀疏表达的图像自动标注算法研究[D].导师:刘丽.山东师范大学,2017.
[18]蔡家柱. 基于稀疏表达的人脸识别算法研究与实现[D]. 导师:解梅. 电子科技大学, 2015.
[19]苏振明.基于结构稀疏表达的图像恢复方法研究[D].导师:万毅.兰州大学,2017.
[20]小桥流水.L1正则化(L1 Regularization)和L2正则化(L2 Regularization)的详细解释以及区别,同时详细解释了正则化在损失函数中的功能,解释了正则化为什么可以防止过拟合,提高泛化.2023.