Background
大模型的训练目前主要分为Pre-training和Post-training,受限于资源算力等原因,实际工作中更多用到的是SFT。
-
对于普通用户来说SFT仍然具备较高的门槛,需要了解一定的理论基础,准备用于微调的数据,由于不同基座模型相应的微调方法也不一样,需要对超参数优化等其他问题
-
目前可以通过完善的微调框架来简化上面的情况,常用框架如:
-
LaMA-Factory: https://github.com/hiyouga/LLaMA-Factory
-
swift: https://github.com/modelscope/swift
-
unsloth: https://github.com/unslothai/unsloth
-
mlx: https://github.com/ml-explore/mlx
-
SuperAdapters: https://github.com/cckuailong/SuperAdapters
-
Firefly: https://github.com/yangjianxin1/Firefly
-
这里推荐使用LaMA-Factory
-
支持多种模型:LLaMA、LLaVA、Mistral、Mixtral-MoE、Qwen、Qwen2-VL、Yi、Gemma、Baichuan、ChatGLM、Phi 等等。
-
集成方法:(增量)预训练、(多模态)指令监督微调、奖励模型训练、PPO 训练、DPO 训练、KTO 训练、ORPO 训练等等。
-
多种精度:16 比特全参数微调、冻结微调、LoRA 微调和基于 AQLM/AWQ/GPTQ/LLM.int8/HQQ/EETQ 的 2/3/4/5/6/8 比特 QLoRA 微调。
-
先进算法:GaLore、BAdam、Adam-mini、DoRA、LongLoRA、LLaMA Pro、Mixture-of-Depths、LoRA+、LoftQ、PiSSA 和 Agent 微调。
-
实用技巧:FlashAttention-2、Unsloth、Liger Kernel、RoPE scaling、NEFTune 和 rsLoRA。
-
实验监控:LlamaBoard、TensorBoard、Wandb、MLflow 等等。
-
极速推理:基于 vLLM 的 OpenAI 风格 API、浏览器界面和命令行接口。
由于2024年6月后,LaMA-Factory进行了升级,相较于原来操作更加简单便捷。
本文介绍下目前新版对llama3.1的微调
基于LaMA-Factory对llama3.1 8B进行微调
1. 环境配置
- 查看当前硬件显卡驱动CUDA
nvidia-smi
官方推荐:
推荐使用
-
py3.10
-
cuda 12.2
- 创建虚拟环境及安装LLaMA-Factory
# 1. 创建虚拟环境 conda create -n llama-factory python=3.11 # 2. 激活虚拟环境 source activate conda activate llama-factory # 3 安装LLaMA-Factory # 3.1 切换到工作路径 cd /home/work # 3.2 下载LLaMA-Factory git clone https://github.com/hiyouga/LLaMA-Factory.git # 3.3 pip 安装依赖 pip install -e ".[torch,metrics]"
- 依赖校验 注意:可以通过下面的命令查看依赖的安装情况
# 查看当前环境信息 python -m torch.utils.collect_env # 查看conda安装版本信息 conda list # CUDA和Pytorch环境校验 在python下 import torch torch.cuda.current_device() torch.cuda.get_device_name(0) torch.__version__
如果发现安装的cuda不是GPU版本,或者版本不匹配,可以直接去pytorch官网安装相应的pytorch
- 安装GPU版本torch conda install pytorch torchvision torchaudio pytorch-cuda=12.1 -c pytorch -c nvidia
- 安装成功验证 在LLaMA-Factory路径下对库进行校验
llamafactory-cli version llamafactory-cli train -h
如果出现下面输出则成功:
安装成功后可以通过webui在网页操作进行微调评估等操作
llamafactory-cli webui
- run with demo
# 切换为你下载的模型文件目录, 这里的demo是Llama-3-8B-Instruct # 如果是其他模型,比如qwen,chatglm,请使用其对应的官方demo model_id = "/path/to/Meta-Llama-3-8B-Instruct" pipeline = transformers.pipeline( "text-generation", model=model_id, model_kwargs={"torch_dtype": torch.bfloat16}, device_map="auto", ) messages = [ {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"}, {"role": "user", "content": "Who are you?"}, ] prompt = pipeline.tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) terminators = [ pipeline.tokenizer.eos_token_id, pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>") ] outputs = pipeline( prompt, max_new_tokens=256, eos_token_id=terminators, do_sample=True, temperature=0.6, top_p=0.9, ) print(outputs[0]["generated_text"][len(prompt):])
2. 上传数据集
配置好环境后,需要准备用于微调的数据集。
需要在examples/train_lora/llama3_lora_sft.yaml文件中修改dataset, 如果不修改则使用默认数据集:
### dataset dataset: identity,alpaca_en_demo
如果要用自己的数据集,则需要将数据上传到data路径下,并且在data中注册data/dataset_info.json进行注册,如
`{ "your_data": { "file_name": "your_data.json" },`
3. 微调
这里演示使用lora微调
1. 更改模型地址
# 修改sft ymal文件 vi examples/train_lora/llama3_lora_sft.yaml # 使用llama3.1-8B模型文件 model_name_or_path: /path/to/Meta-Llama-3___1-8B-Instruct # 模型微调后的结果文件存储路径 output_dir: saves/llama3-8b/lora/sft
2. Run SFT
llamafactory-cli train examples/train_lora/llama3_lora_sft.yaml # 或者指定卡 # CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lora_sft.yaml
3. 训练过程中内存占用情况
这里使用了两张A100-80G,实际1张A100也可以跑起来,
4. 评估预测
# 在 MMLU/CMMLU/C-Eval 上评估 CUDA_VISIBLE_DEVICES=0 llamafactory-cli eval examples/lora_single_gpu/llama3_lora_eval.yaml # 批量预测并计算 BLEU 和 ROUGE 分数 CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lora_predict.yaml
4. Merge
模型微调后的结果需要与基座模型进行merge
# 1. 修改merge yaml文件,修改model path和微调文件path及最终merge导出文件地址 cd /home/LLaMA-Factory vi examples/merge_lora/llama3_lora_sft.yaml ### Note: DO NOT use quantized model or quantization_bit when merging lora adapters ### model model_name_or_path: /path/to/Meta-Llama-3___1-8B-Instruct adapter_name_or_path: saves/llama3-8b/lora/sft template: llama3 finetuning_type: lora ### export export_dir: models/llama3_lora_sft export_size: 2 export_device: cpu export_legacy_format: false # 2. run merge llamafactory-cli export examples/merge_lora/llama3_lora_sft.yaml
5.Infer
使用微调后的模型进行推理
llamafactory-cli chat examples/inference/llama3_lora_sft.yaml
reference:
- LlamaFactory: Unified Efficient Fine-Tuning of 100+ Language Models https://arxiv.org/abs/2403.13372
如何学习AI大模型 ?
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓
对于0基础小白入门:
如果你是零基础小白,想快速入门大模型是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。
😝有需要的小伙伴,可以VX扫描下方二维码免费领取🆓
👉1.大模型入门学习思维导图👈
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
👉2.AGI大模型配套视频👈
很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。
👉3.大模型实际应用报告合集👈
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)
👉4.大模型落地应用案例PPT👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)
👉5.大模型经典学习电子书👈
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
👉6.大模型面试题&答案👈
截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习
这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓