基于LaMA-Factory微调llama3.1-8B

Background

大模型的训练目前主要分为Pre-trainingPost-training,受限于资源算力等原因,实际工作中更多用到的是SFT

  • 对于普通用户来说SFT仍然具备较高的门槛,需要了解一定的理论基础,准备用于微调的数据,由于不同基座模型相应的微调方法也不一样,需要对超参数优化等其他问题

  • 目前可以通过完善的微调框架来简化上面的情况,常用框架如:

  • LaMA-Factory: https://github.com/hiyouga/LLaMA-Factory

  • swift: https://github.com/modelscope/swift

  • unsloth: https://github.com/unslothai/unsloth

  • mlx: https://github.com/ml-explore/mlx

  • SuperAdapters: https://github.com/cckuailong/SuperAdapters

  • Firefly: https://github.com/yangjianxin1/Firefly

  • 这里推荐使用LaMA-Factory

  • 支持多种模型:LLaMA、LLaVA、Mistral、Mixtral-MoE、Qwen、Qwen2-VL、Yi、Gemma、Baichuan、ChatGLM、Phi 等等。

  • 集成方法:(增量)预训练、(多模态)指令监督微调、奖励模型训练、PPO 训练、DPO 训练、KTO 训练、ORPO 训练等等。

  • 多种精度:16 比特全参数微调、冻结微调、LoRA 微调和基于 AQLM/AWQ/GPTQ/LLM.int8/HQQ/EETQ 的 2/3/4/5/6/8 比特 QLoRA 微调。

  • 先进算法:GaLore、BAdam、Adam-mini、DoRA、LongLoRA、LLaMA Pro、Mixture-of-Depths、LoRA+、LoftQ、PiSSA 和 Agent 微调。

  • 实用技巧:FlashAttention-2、Unsloth、Liger Kernel、RoPE scaling、NEFTune 和 rsLoRA。

  • 实验监控:LlamaBoard、TensorBoard、Wandb、MLflow 等等。

  • 极速推理:基于 vLLM 的 OpenAI 风格 API、浏览器界面和命令行接口。

由于2024年6月后,LaMA-Factory进行了升级,相较于原来操作更加简单便捷。

本文介绍下目前新版对llama3.1的微调

基于LaMA-Factory对llama3.1 8B进行微调

1. 环境配置

  1. 查看当前硬件显卡驱动CUDA
nvidia-smi   

官方推荐:

推荐使用

  • py3.10

  • cuda 12.2

  1. 创建虚拟环境及安装LLaMA-Factory
# 1. 创建虚拟环境   conda create -n llama-factory python=3.11   # 2. 激活虚拟环境   source activate   conda activate llama-factory      # 3 安装LLaMA-Factory   # 3.1 切换到工作路径   cd /home/work   # 3.2 下载LLaMA-Factory   git clone https://github.com/hiyouga/LLaMA-Factory.git   # 3.3 pip 安装依赖   pip install -e ".[torch,metrics]"   
  1. 依赖校验 注意:可以通过下面的命令查看依赖的安装情况
# 查看当前环境信息   python -m torch.utils.collect_env   # 查看conda安装版本信息   conda list      # CUDA和Pytorch环境校验 在python下   import torch   torch.cuda.current_device()   torch.cuda.get_device_name(0)   torch.__version__   

如果发现安装的cuda不是GPU版本,或者版本不匹配,可以直接去pytorch官网安装相应的pytorch

- 安装GPU版本torch   conda install pytorch torchvision torchaudio pytorch-cuda=12.1 -c pytorch -c nvidia   
  1. 安装成功验证 在LLaMA-Factory路径下对库进行校验
llamafactory-cli version   llamafactory-cli train -h   

如果出现下面输出则成功:

安装成功后可以通过webui在网页操作进行微调评估等操作

llamafactory-cli webui   
  1. run with demo
# 切换为你下载的模型文件目录, 这里的demo是Llama-3-8B-Instruct   # 如果是其他模型,比如qwen,chatglm,请使用其对应的官方demo   model_id = "/path/to/Meta-Llama-3-8B-Instruct"      pipeline = transformers.pipeline(       "text-generation",       model=model_id,       model_kwargs={"torch_dtype": torch.bfloat16},       device_map="auto",   )      messages = [       {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},       {"role": "user", "content": "Who are you?"},   ]      prompt = pipeline.tokenizer.apply_chat_template(           messages,           tokenize=False,           add_generation_prompt=True   )      terminators = [       pipeline.tokenizer.eos_token_id,       pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>")   ]      outputs = pipeline(       prompt,       max_new_tokens=256,       eos_token_id=terminators,       do_sample=True,       temperature=0.6,       top_p=0.9,   )   print(outputs[0]["generated_text"][len(prompt):])   

2. 上传数据集

配置好环境后,需要准备用于微调的数据集。

需要在examples/train_lora/llama3_lora_sft.yaml文件中修改dataset, 如果不修改则使用默认数据集:

### dataset   dataset: identity,alpaca_en_demo   

如果要用自己的数据集,则需要将数据上传到data路径下,并且在data中注册data/dataset_info.json进行注册,如

 `{     "your_data": {       "file_name": "your_data.json"     },`

3. 微调

这里演示使用lora微调

1. 更改模型地址

# 修改sft ymal文件   vi examples/train_lora/llama3_lora_sft.yaml   # 使用llama3.1-8B模型文件   model_name_or_path: /path/to/Meta-Llama-3___1-8B-Instruct      # 模型微调后的结果文件存储路径   output_dir: saves/llama3-8b/lora/sft      

2. Run SFT

llamafactory-cli train examples/train_lora/llama3_lora_sft.yaml   # 或者指定卡   # CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lora_sft.yaml   

3. 训练过程中内存占用情况

这里使用了两张A100-80G,实际1张A100也可以跑起来,

4. 评估预测

# 在 MMLU/CMMLU/C-Eval 上评估   CUDA_VISIBLE_DEVICES=0 llamafactory-cli eval examples/lora_single_gpu/llama3_lora_eval.yaml   # 批量预测并计算 BLEU 和 ROUGE 分数   CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lora_predict.yaml   

4. Merge

模型微调后的结果需要与基座模型进行merge

# 1. 修改merge yaml文件,修改model path和微调文件path及最终merge导出文件地址   cd /home/LLaMA-Factory   vi examples/merge_lora/llama3_lora_sft.yaml      ### Note: DO NOT use quantized model or quantization_bit when merging lora adapters        ### model   model_name_or_path: /path/to/Meta-Llama-3___1-8B-Instruct   adapter_name_or_path: saves/llama3-8b/lora/sft   template: llama3   finetuning_type: lora      ### export   export_dir: models/llama3_lora_sft   export_size: 2   export_device: cpu   export_legacy_format: false      # 2. run merge   llamafactory-cli export examples/merge_lora/llama3_lora_sft.yaml   

5.Infer

使用微调后的模型进行推理

llamafactory-cli chat examples/inference/llama3_lora_sft.yaml   

reference:

  • LlamaFactory: Unified Efficient Fine-Tuning of 100+ Language Models https://arxiv.org/abs/2403.13372

如何学习AI大模型 ?

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

😝有需要的小伙伴,可以VX扫描下方二维码免费领取🆓

👉1.大模型入门学习思维导图👈

要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。

对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
在这里插入图片描述

👉2.AGI大模型配套视频👈

很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。

在这里插入图片描述
在这里插入图片描述

👉3.大模型实际应用报告合集👈

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)

在这里插入图片描述

👉4.大模型落地应用案例PPT👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)

在这里插入图片描述

👉5.大模型经典学习电子书👈

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
img

在这里插入图片描述

👉6.大模型面试题&答案👈

截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)

在这里插入图片描述
👉学会后的收获:👈
基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值