CUT&Tag数据分析注意要点及流程

参考流程:CUT&Tag Data Processing and Analysis Tutorial

1. 测序片段前10bp存在质量波动属于正常现象无需修剪

2. CUT&Tag不需要进行PCR去重

数据分析流程:

所选择的比对参数:

bowtie2 -p 20 --end-to-end --very-sensitive --no-mixed --no-discordant --phred33 -I 10 -X 700

可以用来对CUT&Tag数据做peakcalling的软件,我仍然选择使用macs系列

参数:

macs3 callpeak -t bam -q 0.05 -f BAMPE --keep-dup all -g hs -n

 (自己总结的经验,如有错误请纠正)

### 使用 CUT&Tag 进行数据分析的方法和工具 #### 工具准备 为了进行基于CUT&Tag技术的数据分析,需先准备好一系列必要的生物信息学工具。这些工具不仅有助于数据预处理,还支持后续的统计分析与可视化工作。 - **SRA Toolkit**: 用于从NCBI SRA数据库下载原始测序数据[^1]。 - **Bowtie2**: 实现快速而灵敏的读段比对到参考基因组上。 - **SAMtools 和 BEDTools**: 处理并转换由 Bowtie2 输出的 SAM/BAM 文件至其他格式以便进一步操作,如提取特定区域的信息或计算覆盖度等。 - **MACS2**: 鉴定 ChIP-seq 或者在此情况下 CUT&Tag 的 peak 峰位置,从而识别潜在的目标位点。 - **R 和 Ngsplot/Deeptools**: 提供强大的图形表示功能,可用于生成热图、密度分布图等多种类型的图表来直观呈现实验结果;同时也具备丰富的包库来进行高级别的统计测试以及机器学习建模等工作流的支持。 #### 数据处理流程概述 当获取到了经过质量控制后的 clean reads 后,则按照以下顺序依次执行各项任务: - 利用 `bowtie2` 将序列映射回相应的物种全基因组序列; - 对齐好的 bam 文件利用 samtools sort/index 排序索引,并通过 bedtools 获得目标区间内的 read counts 计数矩阵; - 应用 macs2 callpeak 寻找显著富集区段(peaks),进而得到可能存在的转录因子结合位点列表; - 结合 RNA-seq 表达谱资料找出共同变化趋势明显的候选调控元件集合,并借助 venn diagram 展示两者间的关系模式[^2]。 ```bash # 下载样本数据 prefetch --option-file sample_accessions.txt # 解压 fastq 格式的压缩包 fastq-dump --split-files *.sra # 构建 bowtie2 索引 bowtie2-build /path/to/reference_genome.fa ref_index # 执行比对过程 bowtie2 -x ref_index -U input.fastq -S output.sam # Bam 文件排序加索引 samtools view -bS output.sam | samtools sort -o sorted.bam - samtools index sorted.bam # Peak calling with MACS2 macs2 callpeak -t treated_samples.bed -c control_sample.bed \ -f BED -g hs -n experiment_name # Venn Diagram generation using R package 'VennDiagram' library(VennDiagram) draw.pairwise.venn(area1=length(setA), area2=length(setB), cross.area=length(intersect(setA,setB))) ```
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值