01 快速入门指南,但只阅读本节是不够的
检索增强生成(Retrieval Augmented Generation)是将用户输入的信息补充到 ChatGPT 等大语言模型(LLM)中的过程,这些信息是用户(或系统)从其他地方检索到的。然后,LLM 可以使用这些信息来增强其回复内容的生成。— Cory Zue
“Retrieval augmented generation is the process of supplementing a user’s input to a large language model (LLM) like ChatGPT with additional information that you (the system) have retrieved from somewhere else. The LLM can then use that information to augment the response that it generates.” — Cory Zue
LLM(大语言模型) 是一项了不起的发明,但容易出现一个比较严重的问题——它们会凭空捏造信息。RAG 在对用户的问题或 query 进行回答的过程中提供问题背景,从而使得 LLM 更加实用。
通过 LangChain 或 LlamaIndex 等框架的快速入门指南,任何人都可以构建一个简单的 RAG 系统,比如仅用大约五行代码就能构建一个用于文档的chatbot。
但是,用