一、应用
1.使用场景
验证性因子分析是用于测量因子与测量项(量表题项)之间的对应关系是否与研究者预测保持一致的一种研究方法。验证性因子分析(CFA)用于验证对应关系。
验证性因子分析CFA的主要目的在于进行效度验证,同时还可以进行共同方法偏差CMV的分析。效度有很多种,比如内容效度,结构效度,聚合(收敛)效度,区分效度等。各个名称的区别说明如下
2.SPSSAU操作如下图
二、案例数据
1.案例背景
当前有一份215份的研究量表数据,其共由四个因子表示,第一个因子共5项,分别是A1~A5;第二项因子共5项,分别是B1~B5;第三个因子共4项,分别是C1~C4;第4个因子共6项,分别是D1~D6。现希望验证此量表的聚合效度和区分效度,并且希望进行共同方法偏差分析CMV。
2.结果
将数据放入分析框中,SPSSAU系统对数据进行处理后,共输出6个表格,如下:
3.图表分析
说明1
从上表可知,本次针对共4个因子,以及20个分析项进行验证性因子分析(CFA)分析。本次分析有效样本量为215,超出分析项数量的10倍,样本量适中。
说明2
因子载荷系数值表格展示因子和测量项之间的关联关系,一般查看标准载荷系数值进行分析即可。
上表格显示,B1与Factor2之间的因子载荷系数值为0.562 < 0.7,说明对应关系较弱,可考虑将此项从Factor2中移除出去。另外从整体上看,各个测量项全部均呈现出0.001水平的显著性( p < 0.001),而且标准化载荷系数值均大于0.7(除B1外),因而说明整体上看,因子与测量项之间有着良好的对应关系,聚合效度较好。
说明3
从上格可知:本研究涉及的4个因子(SPSSAU默认给定名字为Factor 1, Factor 2, Factor 3, Factor 4),它们的AVE值全部均大于0.5,而且CR值全部均大于0.7,因而说明本次测量量表数据具有优秀的聚合效度。
说明4
上表格展示模型拟合指标,共分为常用指标和其它指标。常用指标包括卡方自由度比,GFI,RMSEA,RMR,CFI,NFI和NNFI。其它的一些指标通常使用较少,研究人员可结合实际情况进行选择使用即可。
从上表可知:卡方自由度值为3.389,大于3,而且GFI小于0.9,RMSEA为0.106接近于0.1这一标准,RMR值为0.091不在标准范围内。综合来看,模型构建欠佳,需要进行模型调整。
比如这里将MI>10作为调整标准然后重新进行模型拟合,得到结果如下:
说明5
上表格展示因子与测量项的对应关系MI值,因子与其下属测量项的关系可通过因子载荷系数表格进行查看。MI值并不固定标准大小,一般情况下,该值如果大于20则说明关联性很强。从上表格可以看到,C2与Factor2,Factor4这两个因子间的MI指标均大于15,说明C2与Factor2,Factor4之间可能有着较强的关联性;同时,D5与Factor3之间的MI值为18.121,说明二者有较强的关联性。
综合可知:可考虑将C2,D6这两个指标进行删除(即移除出模型),同时上述因子载荷表格分析还发现B1也可以进行删除。因而将此三项进行删除(移除出模型)后可再次进行模型(限于篇幅限制,SPSSAU并不继续进行分析)。
说明6
上表格展示因子与因子之间的关联性,可通过标准系数进行分析。从上表可知,在进行因子协方差表格分析时,本研究共4个因子,他们两两之间的标准系数值均介于0.6~0.85之间,说明因子之间具有较强的关联性。
三、分析
1.CR值
组合信度(Construct Reliability,CR值):通过因子载荷量计算的表示内部一致性信度质 量的指标值,计算公式如下:
式中,表述因子载荷量,
表示测量误差;
2.AVE值
平均方差抽取量(Average Variance Extracted,AVE值):通过因子载荷量计算的表示收敛效度的指标值。计算公式如下:
式中,表述因子载荷量,
表示测量误差;
3.其他指标
四、扩展
1.SPSSAU分析建议
2.验证性因子分析通常有三个用途
3.具体操作
(1)点击SPSSAU问卷调查里面的‘验证性因子分析’按钮。如下图
(2)拖拽数据后开始分析: