人工智能的最新进展引入了强大的多模态模型,能够处理和生成文本和视觉数据。这些功能对医疗保健应用具有重要的前景,特别是在放射学领域。视觉语言模型(VLMs)可以执行诸如从医学图像生成放射学报告、回答有关这些图像的视觉问题以及检测放射学报告和图像之间的差异等任务。尽管取得了这些进展,但这些应用的临床效用仍有待探索。本研究旨在通过识别和设计与放射学临床相关的视觉语言模型交互,并通过与放射科医生和临床医生的合作来评估其潜在价值和挑战,从而弥合这一差距。
放射学是医疗中的一个关键领域,它在很大程度上依赖于医学图像的解释来为患者的诊疗提供信息。人工智能的进步,特别是在大语言模型和基于视觉的模型方面,有可能通过提高效率、改善准确性和患者整体诊疗来优化放射学工作流。然而,由于人工智能性能不一致、对人工智能生成的输出缺乏信任以及需要进行临床有效性试验等问题,因而将这些技术进步转化为临床实践具有挑战性。此外,医疗保健领域的人工智能开发经常与临床医务人员的实际需求和工作流相脱节而受到批评。
该研究旨在探索视觉语言模型在医疗保健中的设计空间,特别是在放射学中,从而确定临床相关的用例和设计理念。该研究采用了三阶段迭代设计过程,涉及人机交互研究人员、人工智能研究人员、放射科医生和临床医生。
研究团队采用了迭代的、多学科的设计过程,以构想临床相关的视觉语言模型交互,并共同设计了四个视觉语言模型应用概念。这些概念与13位放射科医生和临床医生进行了研究,他们共同认为视觉语言模型概念很有价值,并提出了许多设计建议。
视觉语言模型的四个主要用例是:
草稿报告生成:探索AI生成的放射学报告作为“草稿”的概念,帮助放射科医生在审查和编辑过程中节省时间。
优化报告审查:利用视觉语言模型的能力强化和优化临床医生审查放射学报告的体验,例如通过视觉突显报告中的异常发现。
视觉搜索和查询:基于放射科医生和临床医生在线搜索相似图像的实践,探索通过视觉语言模型进行图像搜索和文本查询的潜在效用。
患者成像历史重要关注点:探索从患者图像历史中提取和突出显示关键见解的能力,以支持临床决策。
这项研究强调了视觉语言模型通过提高效率、准确性和患者诊疗来改变放射学工作流的潜力。通过以人为中心的设计过程,该研究确定了有价值的用例,并为未来在放射学和医疗保健领域开发和集成人工智能工具奠定了基础。这些技术的成功实施需要人工智能研究人员、临床医生和其他有关方之间的持续合作,从而确保人工智能工具满足临床实践的特定需求和工作流。
本文附录部分包含了一个放射学报告的例子,以及用于概念设计的几个交互式原型流程图。
总之,该文为医疗保健领域,尤其是放射学中的多模态人工智能应用提供了深入的洞见,并为未来的研究和实践指明了方向。
该项研究由来自卡内基梅隆大学、微软健康未来和剑桥大学的多位研究人员共同完成。
既然大模型现在这么火热,各行各业都在开发搭建属于自己企业的私有化大模型,那么势必会需要大量大模型人才,同时也会带来大批量的岗位?“雷军曾说过:站在风口,猪都能飞起来”可以说现在大模型就是当下风口,是一个可以改变自身的机会,就看我们能不能抓住了。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】

第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
