【医学视觉大模型】HealthGPT:医学视觉的未来,理解与生成的完美融合

摘要

我们提出了一个强大的医疗大型视觉语言模型(Med-LVLM)HealthGPT,它在一个统一的自回归范式中整合了医疗视觉理解与生成能力。我们的引导原则是逐步适应异构的理解与生成知识到预训练的大型语言模型(LLMs)。这是通过一种新颖的异构低秩适配(H-LoRA)技术实现的,辅以定制的分层视觉感知方法和三阶段学习策略。为了有效学习HealthGPT,我们设计了一个全面的医疗领域特定理解与生成数据集,称为VL-Health。实验结果显示HealthGPT在医疗视觉统一任务中具有卓越的性能和可扩展性。我们的项目可以在

https://github.com/DCDmllm/HealthGPT 访问。

https://arxiv.org/abs/2502.09838

https://huggingface.co/lintw/HealthGPT-M3

核心速览

研究背景

  1. 研究问题:这篇文章要解决的问题是如何在医疗领域统一视觉语言理解(NLU)和生成(NLG),以应对医疗应用中的复杂任务。

  2. 研究难点:该问题的研究难点包括:医疗数据的高规模和质量限制,以及理解和生成任务之间的冲突。具体来说,医疗数据的规模和多样性不足,且理解和生成任务需要不同的视觉细节处理方式,难以在同一模型中同时优化。

  3. 相关工作:该问题的研究相关工作包括:利用预训练的大型语言模型(LLMs)和视觉指令数据构建交互式诊断工具和治疗计划系统;开发能够跨多种视觉模态理解和生成内容的一体化LVLMs。然而,现有的研究和模型主要集中在视觉理解任务,缺乏医疗视觉生成能力,且未充分探索医疗领域的统一框架。

研究方法

这篇论文提出了HealthGPT,一种用于解决医疗多模态理解生成问题的医学大型视觉语言模型(Med-LVLM)。具体来说,

  1. HealthGPT架构:HealthGPT通过离散令牌表示同时覆盖文本和视觉输出,将视觉理解和生成任务统一为自回归任务。其架构结合了分层视觉感知(HVP)和异构低秩适应(H-LoRA)技术。

  2. 分层视觉感知(HVP):HVP将图像压缩为多个层次上的离散视觉令牌。具体来说,图像通过多层ViT块转换为一系列特征,这些特征被分为具体粒度和抽象粒度两类。具体粒度特征适用于生成任务,而抽象粒度特征适用于理解任务。

  3. 异构低秩适应(H-LoRA):H-LoRA通过低秩矩阵分解将理解和生成任务的异构知识存储在独立的模块中,并通过硬路由选择动态提取任务相关的知识。H-LoRA的计算开销较低,特别适用于大规模任务。

实验设计

  • 数据集:研究团队构建了VL-Health数据集,包括七个理解任务和五个生成任务。数据集涵盖了多种医疗图像模态和疾病类型,以确保模型的泛化能力。

  • 模型选择:选择了CLIP-L/14作为视觉编码器,并使用其第二层和倒数第二层的隐藏状态作为具体粒度和抽象粒度特征。基础模型选择了phi-3-mini和phi-4。

  • 训练阶段:采用三阶段学习策略:

  • 第一阶段

    :多模态对齐,分别训练医学理解任务和生成任务的视觉适配器和H-LoRA子模块。

  • 第二阶段

    :异构H-LoRA插件适应,微调词嵌入层和输出头,保持H-LoRA子模块冻结。

  • 第三阶段

    :视觉指令微调,引入额外的任务特定数据进一步优化模型。

结果与分析

  1. 理解任务:在多个医学视觉理解任务中,HealthGPT表现优于现有的医学特定模型和通用模型。例如,在医疗多模态统一任务中,HealthGPT-M3的得分达到了61.3,显著优于现有统一模型。

  2. 生成任务:在三个关键的医疗图像生成任务中,HealthGPT也表现出色:

  • 模态转换:在CT到MRI的脑部和骨盆区域的转换任务中,HealthGPT-M3的SSIM得分为79.38,显著优于传统方法。

  • 超分辨率:在IXI数据集上的4倍超分辨率实验中,HealthGPT-M3在SSIM、PSNR和MSE指标上均表现优异。

  • 重建:与健康GPT-M3相比,统一模型在视觉重建任务中的可控性较差。

总体结论

这篇论文提出了HealthGPT,一种用于医疗多模态理解生成的医学大型视觉语言模型。通过异构低秩适应技术和分层视觉感知,HealthGPT在多个医疗任务中表现出色,显著提高了医疗应用的多功能性和准确性。研究结果表明,HealthGPT在医疗视觉理解和生成任务中具有显著的性能提升和应用潜力。

论文评价

优点与创新

  1. 统一的医疗多模态模型

    :HealthGPT是第一个在复杂医疗场景中实现多模态理解和生成的统一框架。

  2. 有效的学习范式

    :提出了H-LoRA(异构低秩适应),通过任务门控解耦来优化多任务学习,有效缓解数据冲突问题。

  3. 全面的训练数据集

    :设计了VL-Health数据集,包含七种理解任务和五种生成任务,为统一医疗多模态模型的训练提供了丰富的数据支持。

  4. 下游任务的显著改进

    :广泛的实验验证了HealthGPT在医疗视觉语言理解和生成任务中的有效性,性能优于或接近现有的最先进模型。

  5. 分层视觉感知

    :引入了分层视觉感知(HVP),将视觉细节学习与视觉变换器(ViT)分离,以适应理解和生成任务的不同需求。

  6. 三阶段学习策略

    :设计了三阶段学习策略(TLS),通过最小混合任务训练和H-LoRA插件的微调,显著提高了模型的适应性和灵活性。

不足与反思

  1. 数据规模和质量的限制

    :医疗数据的规模和质量的限制使得从头开始开发统一的医疗模型具有挑战性。

  2. 理解与生成任务之间的冲突

    :理解任务通常剥离视觉细节以关注抽象,而生成任务需要详细保留,这使得在自回归多模态训练中保持前后LVLMs的一致性成为一个难题。尽管一些方法探索了理解与生成任务之间的相互增强,但性能提升仍然表现出递减的回报,性能退化仍是一个显著问题。

关键问题及回答

问题1:HealthGPT的分层视觉感知(HVP)技术是如何设计的?它在理解和生成任务中如何发挥作用?

分层视觉感知(HVP)技术通过将图像压缩为多个层次上的离散视觉令牌来设计。具体来说,图像通过多层ViT(Vision Transformer)块转换为一系列特征,这些特征被分为具体粒度和抽象粒度两类。具体粒度特征适用于生成任务,因为它们包含了更多的全局信息;而抽象粒度特征适用于理解任务,因为它们更接近文本空间,包含了更多的语义信息。通过这种方式,HVP能够在不同任务之间灵活地调整视觉输入的粒度,从而提高模型在理解和生成任务中的效率。

问题2:异构低秩适应(H-LoRA)技术在HealthGPT中是如何实现的?它有哪些优势?

异构低秩适应(H-LoRA)技术通过低秩矩阵分解将理解和生成任务的异构知识存储在独立的模块中。具体实现过程中,H-LoRA将 bypass weight matrix分解为两个低秩矩阵,从而减少可学习参数的数量。H-LoRA的优势在于其较低的计算开销,特别适用于大规模任务。与混合专家(MoE)方法相比,H-LoRA通过矩阵合并和路由权重分配机制避免了多重矩阵乘法的延迟,显著提高了计算效率。

问题3:HealthGPT的三阶段学习策略是如何设计的?每个阶段的目标是什么?

HealthGPT采用了三阶段学习策略,具体目标如下:

  • 第一阶段

    :多模态对齐。在这个阶段,分别训练医学理解任务和生成任务的视觉适配器和H-LoRA子模块。通过使用高质量的图像-文本对,确保视觉嵌入与文本嵌入的对齐,从而建立初始的模型输出与视觉输入之间的对齐关系。

  • 第二阶段

    :异构H-LoRA插件适应。在这个阶段,微调词嵌入层和输出头,同时保持H-LoRA子模块冻结。通过少量的混合数据,确保不同任务的H-LoRA插件能够无缝衔接,形成统一的基础模型。

  • 第三阶段

    :视觉指令微调。在这个阶段,引入额外的任务特定数据进一步优化模型,使其能够适应具体的下游任务,如医学视觉理解(如医疗问答、医疗对话和报告生成)或生成任务(如超分辨率、去噪和模态转换)。

AI大模型学习路线

如果你对AI大模型入门感兴趣,那么你需要的话可以点击这里大模型重磅福利:入门进阶全套104G学习资源包免费分享!

扫描下方csdn官方合作二维码获取哦!

在这里插入图片描述

这是一份大模型从零基础到进阶的学习路线大纲全览,小伙伴们记得点个收藏!

请添加图片描述
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

100套AI大模型商业化落地方案

请添加图片描述

大模型全套视频教程

请添加图片描述

200本大模型PDF书籍

请添加图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

LLM面试题合集

请添加图片描述

大模型产品经理资源合集

请添加图片描述

大模型项目实战合集

请添加图片描述

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值