什么是大模型幻觉?它是如何产生的?怎么优化?

一、什么是大模型幻觉
相信大家在使用ChatGPT或者其他大模型时会遇到这样的情况,模型答非所问甚至自相矛盾。这种现象我们称为“幻觉”

"幻觉"指的是模型生成的信息或回答不准确或虚假的现象。比如,模型可能在回答问题时编造不真实的细节,或者对事实产生错误的解释。在准确率要求非常高的场景下幻觉是不可接受的,比如新闻领域、医疗领域、金融领域等。

以下为几个典型的大模型幻觉案例:

1、阅读理解任务中的幻觉:大模型在回答问题时,可能会产生与原文无关的答案,甚至编造事实。

2、图像识别任务中的幻觉:大模型在识别图像时,可能会将无关的物体识别为目标物体,导致错误判断。

3、生成文本任务中的幻觉:大模型在生成文本时,可能会产生语法错误、逻辑混乱的现象。

二、大模型幻觉产生的原因
大模型幻觉的形成源于多个方面,大模型产生幻觉的根本原因,主要分为三个关键方面:数据、训练和推理。

1、来源于数据偏差

大模型的知识和能力主要来自于预训练数据,如果预训练数据使用了不完整、存在系统性误差或者过期的数据,那么就很可能导致知识的错误,从而引起幻觉现象。比如:

训练集中某个类别的样本过多,模型可能会过度偏向于预测这个类别,即使在遇到属于其他类别的数据时也是如此。

训练数据的不充分性:训练数据可能无法覆盖所有可能的情况,特别是在一些具有高度多样性的领域,其后果就是当模型遇到训练数据中未出现的情况时,可能会做出错误的预测,因为它没有学习到如何处理这些情况。

2、来源于训练

预训练阶段:大模型在这一阶段学习通用表征并捕捉广泛的知识,通常采用基于transformer的架构,在庞大的语料库中进行因果语言建模。但是,固有的架构设计和研究人员所采用的特定训练策略,可能会产生与幻觉相关的问题。比如:过拟合使得模型在训练数据上学习得太过精确,以至于它不仅学习了数据的真实分布,还学习了数据中的随机噪声和特异性特征。

3、来源于生成/推理

经过预训练后,解码在体现大模型能力方面发挥着重要作用。然而,解码策略的某些缺陷可能导致大模型出现幻觉。关键原因是解码策略固有的随机性、缺乏透明度和可解释性(深度学习模型其内部工作原理往往是不透明的,这使得很难理解模型为何做出特定预测)

三、大模型幻觉评估
评估大模型的幻觉程度可以通过以下方法

1、人工评审:通过专家对模型生成的内容进行审查,评估其准确性和一致性。

2、准确性测试:使用标准化测试集,对模型的回答与事实进行比对,检查其正确性。

3、用户反馈:收集用户对模型生成内容的反馈,尤其是错误报告,分析其常见问题。

4、自动化检测:应用自动化工具和算法检测生成内容中的不一致性或与事实的偏差。

5、对比基准:与已知的高质量模型进行对比,评估其生成内容的质量差异。(有些方法和内容可以参考论文:A Survey on Hallucination in Large Language Models: Principles, Taxonomy, Challenges, and Open Questions)。

四、减少大模型幻觉产生的策略
减少大模型幻觉的产生可以通过以下几个策略:

1、提高数据质量:确保训练数据的准确性和全面性,去除数据中的错误、偏见和噪声。这包括清理数据、增加验证步骤以及使用高质量的标注数据。

2、模型校准:在模型生成后,应用后处理和校准技术来提高生成内容的准确性。可以使用可信度评估机制来判断生成的内容是否可靠。

3、增强上下文理解:改进模型对上下文的理解能力。例如,使用更复杂的上下文建模技术和推理机制,以便模型更好地处理长文本和复杂语境。

4、多模态融合:结合不同的数据源,如图像、声音和文本,来提高生成内容的准确性和全面性。

5、用户反馈机制:建立一个用户反馈系统,让用户报告生成的错误信息。模型可以利用这些反馈进行改进,减少未来的幻觉现象。

6、增加知识库和常识性知识:通过将模型与知识库和常识性知识结合,使其能更准确地回答基于事实的问题。

7、定期审查和更新:定期审查和更新模型及其训练数据,以保持其对新信息和变化的准确性。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值