大模型在各种下游任务取得了非常出色的性能,但是我们使用的过程中,不可否认,偶尔会产生下面的一些问题:
- 与用户输入不符(diverges from the user input)
- 与之前生成的内容相矛盾(contradicts previously generated context)
- 与一些事实不一致(misaligns with established world knowledge)
这种现象被称为“幻觉”。本文提出了LLMs幻觉现象的分类,分析了用于评估幻觉的基准测试,探讨了旨在减轻LLMs幻觉的现有方法,并讨论了未来研究的潜在方向。
下面的图片概括了本文的主要内容:
一、幻觉的三个定义
输入幻觉(Input-Conflicting Hallucination): 这种幻觉发生时,LLMs 生成的内容与用户的输入不符。例如,一个模型可能生成与用户问题无关的答案。
上下文幻觉(Context-Conflicting Hallucination): 这类幻觉指的是生成的内容与之前生成的上下文相矛盾。这可能发生在对话生成或相关需要维持一致性的任务中。
事实幻觉(Fact-Conflicting Hallucination): 这种幻觉涉及到生成内容与已建立的世界知识不一致,如事实错误或错误的信息。
二、三种Benchmark来评估LLM幻觉的问题
输入幻觉基准(Input-Conflicting Benchmark): 这些基准测试旨在评估模型在面对可能引发输入冲突幻觉的任务时的表现,比如 QMSum,FENMT,FEQA 等。
上下文幻觉基准(Context-Conflicting Benchmark): 如 HADES 等,这些基准测试用于评估模型在长篇生成或需要上下文一致性的情况下的表现。
事实幻觉基准(Fact-Conflicting Benchmark): 例如 TruthfulQA,FActScore,HaluEval,FACTOR 等,这些测试用于检测模型在面对需要准确事实信息的任务时是否会产生事实错误。
三、对应的解决方法
预训练期间策略(Pre-training): 大型语言模型(LLMs)会从大量的训练数据中积累知识,并将其嵌入模型参数中。幻觉可能发生在模型缺乏相关知识或从训练数据中吸收了错误知识时。
通过以下方法可以在预训练期间减轻幻觉:
-
清洗预训练语料库:筛选出那些不可靠或不可验证的数据,确保 LLMs 在训练期间接触到的信息是准确和可靠的。质量控制:使用高质量参考语料库进行相似性匹配来清洗数据,如 GPT-3 的预训练数据清理过程。
-
数据选择与过滤:自动选择可靠数据或过滤出噪声数据。例如,Llama 2 模型在约两万亿 token 上进行了预训练,并有策略地从事实来源如维基百科中抽样数据。
-
事实性强化:在预训练阶段强调每个句子作为独立事实,通过在句子前添加主题前缀来提高模型对事实性的理解。
“预训练过程中幻觉的缓解主要集中在围绕预训练语料库。目前主要采用简单的启发式规则进行数据选择和过滤。”
监督式微调(SFT)期间的策略: 监督式微调(SFT)是一种常见的做法,主要调整 LLMs 从预训练中获得的知识,并学习如何与用户互动。
在 SFT 阶段可以采取以下措施:
Honesty-oriented SFT: 在 SFT 数据中引入诚实样本,这些样本会承认“我不知道”或表达无法回答某些问题的无能为力,从而教会 LLMs 在其知识范围之外时如何适当回应。
质量监控: 手动或自动策划 SFT 数据,选择高质量的指令性数据,通过人类专家手动标注或设计特定规则来自动选择。
行为克隆风险管理: 注意 SFT 过程中可能通过模仿专家行为而引入的幻觉,这可能导致模型学习到的是形式和风格而非实质内容。
基于人类反馈的强化学习(RLHF): RLHF 是一种训练策略,通过人类反馈来强化和调整 LLMs 的行为。
这种方法可以在 LLMs 推理阶段减少幻觉风险:
-
不确定性处理: 教会模型如何处理不确定性问题,而不是盲目自信地生成答案。
-
知识边界识别: 帮助模型识别其知识边界,避免在无法给出准确答案时生成幻觉内容。
-
适应性学习: 使 LLMs 能够在面对超出其知识范围的问题时,学会如何拒绝回答或表明自己的不确定性。
“RLHF 可能会表现出保守主义,在 helpfulness 和 honesty 之间存在 imbalanced trade-off。比如说,下图的回答就是一个例子:ChatGPT 倾向于过度回避,避免提供它已经知道的答案。”
推理期间(inference time)的幻觉缓解策略
设计解码策略:
-
解码策略: 比如贪婪解码和 beam search 解码,它们决定了我们如何从模型生成的概率分布中选择输出 token。
-
factual-nucleus sampling: Lee et al. (2022) 提出了一种新的解码算法,旨在通过结合 top-p 采样和贪婪解码的优势来更有效地平衡多样性和事实性。
“该方法易于部署,具有应用前景。然而,对于这种方法,大多数都需要访问token输出概率,而大量llm是闭源的,无法获得这样的信息”
依赖外部知识:
-
链式验证框架(CoVE): Dhuliawala et al. (2023) 开发了基于独立验证问题的观察的解码框架,以改进长答案的事实性。
-
推理-时间干预(ITI): Li et al. (2023b) 引入了一种新的方法,基于 LLMs 具有与事实解释相关的潜在、可解释的子结构的假设,通过在每个注意力头上拟合二分类器来识别出与事实性相关的头集合,并在推理期间沿这些事实性相关的方向调整模型激活。
-
上下文感知解码(CAD): Shi et al. (2023b) 提出了一种直接的上下文感知解码策略,旨在仅考虑查询来改进生成的内容的事实性。
利用外部知识:
-
知识获取: LLMs 通过预训练和微调获取大量内部化知识。然而,不正确或过时的参数化知识可能导致幻觉。研究人员提议从可靠来源获取最新的、可验证的知识作为外部知识库的一种补充。
-
外部工具: 除了仅从知识库检索信息之外,还可以使用外部工具向 LLMs 提供有价值的证据,以增强它们生成的内容的真实性。
利用不确定性:
这些方法展示了在模型的推理阶段可以实施的多种策略,以减少或缓解幻觉现象,从而提高 LLMs 的可靠性和实用性。
在第5.5节及其之后的部分,论文讨论了多种缓解大型语言模型(LLMs)幻觉的方法,并提出了一些研究展望。
以下是每部分的详细内容:除此之外,作者提到了其他的方法,比如说:
多智能体互动 (Multi-agent Interaction): 通过多个 LLMs(作为独立代理)的独立提案和协作辩论来减轻幻觉,这些代理会独立讨论并达成共识。
提示工程 (Prompt Engineering): 强调使用有效提示来缓解幻觉,提出链式思维提示来促使 LLMs 生成推理步骤并编排最终答案。
分析 LLMs 内部状态 (Analyzing LLMs’ Internal States): 提出了声明准确性预测层(SAPLMA),这是一个分类器,用于教会 LLMs 识别自己生成的可能是虚假的信息。
Human-in-the-loop: 介绍了一个框架,利用 LLMs 对用户查询进行迭代解答,并通过人类参与来调整答案以减轻幻觉。
那么未来还有什么值得进行研究呢?
可靠的评估 (Reliable Evaluation): 讨论了评估 LLMs 中幻觉的现有基准的问题,并指出了需要解决的问题,如自动生成的评估与人类注释的一致性。
多语言幻觉 (Multi-lingual Hallucination): 强调了 LLMs 在低资源语言中处理幻觉的挑战,建议进行系统性后续工作和跨多种语言的调查。
多模态幻觉 (Multi-modal Hallucination): 探索了在多模态上下文中减轻 LLMs 幻觉的方法,包括将 LLMs 扩展到其他模态,如音频和视频。
模型编辑 (Model Editing): 讨论了直接修改 LLMs 参数以减少幻觉的方法。
攻击/防御诱发幻觉 (Attack/Defense for Inducing Hallucination): 强调了攻击和防御策略在缓解幻觉方面的重要性。
四、最后分享
AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。
学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。
这里给大家精心整理了一份
全面的AI大模型学习资源
,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享
!
1. 成长路线图&学习规划
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。
2. 大模型经典PDF书籍
书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。(书籍含电子版PDF)
3. 大模型视频教程
对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识。
4. 2024行业报告
行业分析主要包括对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。
5. 大模型项目实战
学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。
6. 大模型面试题
面试不仅是技术的较量,更需要充分的准备。
在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。
全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以
微信扫描下方CSDN官方认证二维码
,免费领取【保证100%免费
】