2025年最新免费AI大模型API汇总及国内大模型使用教程(附代码)

前言

免费大模型API一览
大模型免费版本免费限制控制台(api_key等)API文档
讯飞星火大模型spark-lite

tokens:总量无限;

QPS:2;(每秒发送的请求数)

有效期:不限

访问链接访问链接
百度千帆大模型平台ERNIE-Speed-8K

RPM = 300,TPM = 300000

(RPM是每分钟请求数(Requests Per Minute),TPM是指每分钟处理的tokens数量)

访问链接访问链接
ERNIE-Speed-128KRPM = 60,TPM = 300000
ERNIE-Lite-8K-0922RPM = 300,TPM = 300000
ERNIE-Lite-8KRPM = 300,TPM = 300000
ERNIE-Tiny-8KRPM = 300,TPM = 300000
腾讯混元大模型hunyuan-lite限制并发数为 5 路访问链接访问链接
字节扣子(coze.cn)豆包·Function call模型(32K)当前扣子 API 免费供开发者使用,每个空间的 API 请求限额如下:
QPS (每秒发送的请求数):2
QPM (每分钟发送的请求数):60
QPD (每天发送的请求数):3000
访问链接访问链接
通义千问-Max(8K)
MiniMax 6.5s(245K)
Moonshot(8K)
Moonshot(32K)
Moonshot(128K)
Llama FamilyAtom-13B-Chat1.每天 8-22 点:接口限速每分钟 20 次并发
2.每天 22-次日 8 点:接口限速每分钟 50 次并发
访问链接访问链接
Atom-7B-Chat
Atom-1B-Chat
Llama3-Chinese-8B-Instruct
groqgemma-7b-it

rpm为30,

rpd为14400,

TOKENS PER MINUTE也有限制

访问链接访问链接
mixtral-8x7b-32768
llama3-70b-8192
llama3-8b-8192
Google Geminigemini-1.5-pro

15RPM(每分钟请求数);

100万 TPM(每分钟tokens);

1500 RPD(每天请求数)

访问链接访问链接
gemini-1.5-flash
gemini-1.0-pro
gemini-pro-vision
硅基流动Qwen2-7B-Instruct

RPM限制为100,

QPS限制为3,

更多可以进行申请

访问链接访问链接
Qwen2-1.5B-Instruct
Qwen1.5-7B-Chat
glm-4-9b-chat
chatglm3-6b
Yi-1.5-9B-Chat-16K
Yi-1.5-6B-Chat
注意:如果链接不全,请点击下面原文链接,文章比较完整。

2024年最新免费AI大模型API汇总及国内大模型使用教程(附代码)https://www.meoai.net/free-api.html

讯飞星火spark-lite模型

spark-lite介绍页面https://xinghuo.xfyun.cn/sparkapi?scr=true

到控制台https://console.xfyun.cn/services/cbm查看appid、apikey、apisecret信息

也可以到调试中心调试使用

星火认知大模型Web API文档中的代码直接可以用,记得替换其中的SPARKAI_URL 和 SPARKAI_DOMAIN值,

Spark Lite请求地址,对应的domain参数为general:

wss://spark-api.xf-yun.com/v1.1/chat

百度千帆speed和lite模型

到千帆平台上开通免费的模型百度智能云千帆大模型平台

注意开通需要实名认证!!!

到应用接入中创建应用,这里就有了AppIDAPI KeySecret Key

也可以到体验中心体验百度智能云千帆大模型平台

下面是ERNIE-Speed-8K的Python代码,你换其他模型只需要替换main()中的URL就行

模型参数
ERNIE-Speed-128Kernie-speed-128k
ERNIE-Speed-8Kernie-speed
ERNIE-Lite-8K-0922eb-instant
ERNIE-Lite-8Kernie-lite-8k
ERNIE-Tiny-8Kernie-tiny-8k
import requests
import json

API_KEY = "你的API Key"
SECRET_KEY = "你的Secret Key"

def main():
        
    url = "https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/chat/ernie_speed?access_token=" + get_access_token()
    
    payload = json.dumps({
        "messages": [
            {
                "role": "user",
                "content": "你好"
            },
        ]
    })
    headers = {
        'Content-Type': 'application/json'
    }
    
    response = requests.request("POST", url, headers=headers, data=payload)
    
    print(response.text)
    

def get_access_token():
    """
    使用 AK,SK 生成鉴权签名(Access Token)
    :return: access_token,或是None(如果错误)
    """
    url = "https://aip.baidubce.com/oauth/2.0/token"
    params = {"grant_type": "client_credentials", "client_id": API_KEY, "client_secret": SECRET_KEY}
    return str(requests.post(url, params=params).json().get("access_token"))

if __name__ == '__main__':
    main()

腾讯混元hunyuan-lite模型

腾讯混元大模型接入地址https://console.cloud.tencent.com/hunyuan/start

点击创建密钥,到新页面,新建密钥

也可以到调试界面进行调试使用,在最开始表格中的文档查看,进去点击调试好了,选择你的代码复制到本地即可。

coze扣子API使用

在调用扣子 API 前,确保你已经创建了个人访问令牌,并将 Bot 发布为了 API 服务。​

1.创建个人访问令牌。​

扣子 API 使用个人访问令牌进行身份验证和鉴权。你可以在个人访问令牌页面创建个人访问令牌,并添加对应权限。详细说明可参考​鉴权​

​​在这里插入图片描述

2.将 Bot 发布为 API 服务。​

进入目标空间,创建一个 Bot 或选择一个已创建的 Bot。​

在编排页面,单击发布。​

在发布页面,选择 Bot as API 选项,然后单击发布。


  • ​​

简单的单轮对话Python代码如下:请确保将{YOUR PERSONAL_ACCESS_TOKEN}{YOUR BOT}替换为实际的值。

import requests

url = "https://api.coze.cn/open_api/v2/chat"
headers = {
    "Authorization": "Bearer {YOUR PERSONAL_ACCESS_TOKEN}",
    "Content-Type": "application/json",
    "Accept": "*/*",
    "Host": "api.coze.cn",
    "Connection": "keep-alive"
}
data = {
    "conversation_id": "123",
    "bot_id": "{YOUR BOT}",
    "user": "29032201862555",
    "query": "你好",
    "stream": False
}

response = requests.post(url, headers=headers, json=data)

print(response.status_code)
print(response.json())

硅基流动

进入硅基流动统一登录点击创建新API密钥,

这里是平台模型列表平台模型列表

  • Qwen/Qwen2-7B-Instruct (32K, 免费)
  • Qwen/Qwen2-1.5B-Instruct (32K, 免费)
  • Qwen/Qwen1.5-7B-Chat (32K, 免费)
  • THUDM/glm-4-9b-chat (32K, 免费)
  • THUDM/chatglm3-6b (32K, 免费)
  • 01-ai/Yi-1.5-9B-Chat-16K (16K, 免费)
  • 01-ai/Yi-1.5-6B-Chat (4K, 免费)

这里可以进行调试Get User Info

下面附上Python代码,换上你的API密钥,括号记得删掉:

import requests

url = "https://api.siliconflow.cn/v1/chat/completions"

payload = {

    "model": "Qwen/Qwen2-7B-Instruct",

    "messages": [

        {

            "role": "user",

            "content": "你好"

        }

    ],

    "max_tokens": 4096,

    "stream": False,

    "temperature": 0.5

}

headers = {

    "accept": "application/json",

    "content-type": "application/json",

    "authorization": "Bearer {你的API密钥}"

}

response = requests.post(url, json=payload, headers=headers)

print(response.text)

创作不易,如果有用,请求关注、点赞、分享、,一起分享AI~,是我最大的动力

如何学习AI大模型?

作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

四、AI大模型商业化落地方案

img

作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。

<< 如果你希望在国内环境中调用类似的 API 并指定 `api_key`,可以按照以下步骤操作。假设你使用的是国内支持的相关模型服务(如阿里云 Qwen、百度文心一言等),下面是一些通用的指导: --- ### 1. **选择合适的国内服务商** - 阿里云:通义千问 (Qwen) - 百度:文心一言 - 华为:盘古大模型 这些平台都提供了各自的 API 文档及接入指南。 --- ### 2. **获取 API Key 和 Secret Key** 登录对应的服务商控制台(例如阿里云管理后台或百度智能云),创建应用并获得专属的: - **Access Key/Api Key**: 用户身份标识。 - **Secret Key**: 私钥用于签名验证。 注意妥善保管这两个关键数据! --- ### 3. **设置 API 地址** 不同厂商提供的接口地址各有差异,请查阅官方文档确认最新的 URL 。比如对于某些特定区域内的服务器可能会有不同的 endpoint ,形如: ```plaintext https://<region>.someprovider.com/v1/models/inference ``` 将上述 `<region>` 替换为你实际使用的地区代号即可。 --- ### 示例代码(基于假想场景) 这里以一种简单形式展示如何构造 HTTP 请求,并带必要的认证信息(api key)。 #### Python 实现案例(针对某虚拟服务商): ```python import requests # 定义请求参数 url = "https://model.example.com/api" # 更改为真实可用的API入口点 headers = { 'Authorization': f'Bearer YOUR_API_KEY', # 将YOUR_API_KEY替换为自己申请到的实际值 } payload = {"prompt": "你好", "max_tokens": 50} # 自定义更多选项依据需求调整 response = requests.post(url, json=payload, headers=headers) if response.status_code == 200: print("成功:", response.json()) else: print(f"失败:{response.text}") ``` > 提醒:以上仅为示例模板结构仅供参考;具体字段名称需依照目标服务平台的要求为准。 --- ### 注意事项 - 确保网络环境畅通无阻,避免因防火墙等原因无法访问目标网址; - 测试阶段建议从小规模开始尝试,逐步扩大业务范围; - 对敏感资料做好加密保护措施以防泄露风险发生。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值