降维:
降维是指通过保留一些比较重要的特征,去除一些冗余的特征,减少数据特征的维度。
单细胞聚类的一般步骤有:数据质控,基因筛选,PCA降维,以及基于PCA预降维空间的聚类和进一步的降维可视化。
区别
1.PCA
PCA:线性降维
它通过寻找数据中的主成分来减少数据的维度。主成分是原始数据中方差最大的线性组合。
实际应用:生物信息学中探索单细胞RNA测序数据的主要变化,做数据降维。计算快
2.UMAP
UMAP:非线性降维技术,
它通过在高维空间中保持数据点之间的局部关系来进行降维。UMAP基于流形学习的思想,尝试在低维空间中保持数据点之间的局部距离。
实际应用:生物信息学中,单细胞RNA数据,做数据聚类。计算慢
3.t-SNE
t-SNE:非线性降维技术
它试图在低维空间中保持高维数据点之间的局部相似性关系。这使得它特别适用于探索高维数据中的非线性结构。
实际应用:生物信息学中,单细胞RNA数据,,于UMAP类似,做数据聚类。计算慢
与UMAP的区别:t-SNE具有一些关键的超参数,如学习率、迭代次数等,对结果具有较大影响。因此,在使用t-SNE时需要进行仔细的参数调整和结果评估。