降维算法 | PCA | UMAP | t-SNE

本文介绍了单细胞聚类中常用的三种降维技术:PCA(线性降维)、UMAP(非线性保持局部关系)和t-SNE(非线性保持局部相似性)。重点讨论了它们在生物信息学中的应用,特别是单细胞RNA数据处理,以及t-SNE参数调整对于可视化效果的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

降维:

降维是指通过保留一些比较重要的特征,去除一些冗余的特征,减少数据特征的维度。

单细胞聚类的一般步骤有:数据质控,基因筛选,PCA降维,以及基于PCA预降维空间的聚类和进一步的降维可视化。

区别

1.PCA

PCA:线性降维

它通过寻找数据中的主成分来减少数据的维度。主成分是原始数据中方差最大的线性组合。

实际应用:生物信息学中探索单细胞RNA测序数据的主要变化,做数据降维。计算快

2.UMAP

UMAP:非线性降维技术,

它通过在高维空间中保持数据点之间的局部关系来进行降维。UMAP基于流形学习的思想,尝试在低维空间中保持数据点之间的局部距离。

实际应用:生物信息学中,单细胞RNA数据,做数据聚类计算慢

3.t-SNE

t-SNE:非线性降维技术

它试图在低维空间中保持高维数据点之间的局部相似性关系。这使得它特别适用于探索高维数据中的非线性结构。

实际应用:生物信息学中,单细胞RNA数据,,于UMAP类似,做数据聚类计算慢

与UMAP的区别:t-SNE具有一些关键的超参数,如学习率、迭代次数等,对结果具有较大影响。因此,在使用t-SNE时需要进行仔细的参数调整和结果评估。

算法:

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值