Nbeats学习笔记
1. 前言
本篇博客主要介绍 Nbeats(Neural basis expansion analysis for interpretable time series forecasting) 模型,是一种专门用于时间序列预测的神经网络模型。Nbeats 模型可以对时间序列进行高效且准确的预测,并且可以进行解释。Nbeats 模型的亮点在于其可以自适应地选择不同层面与不同时间窗口下的基函数,使得模型可以捕捉到时间序列中的各种波动和周期性。
2. Nbeats 模型介绍
2.1 Nbeats 模型概述
Nbeats 模型由 Element AI 提出,是一种基于神经网络的时间序列预测模型。Nbeats 模型的核心思想是将时间序列分解成若干个基函数,每个基函数可以被视为一个小型的神经网络,来进行时间序列的拟合。Nbeats 模型可以自适应地选择不同层面与不同时间窗口下的基函数,从而建立了一个简单而高效的模型框架。
2.2 Nbeats 模型结构
Nbeats 模型包含一个堆叠的基函数块,每个基函数块采用了基于残差的模型设计。Nbeats 模型可以在每个基函数块中选择若干个残差块,并且采用了 skip-connection 的结构,使得模型可以提取到不同层面的特征。
2.3 Nbeats 模型原理
Nbeats 模型主要分为两个部分:encoder 和 decoder。Encoder 部分用于提取时间序列的特征,Decoder 部分用于进行时间序列的预测。
2.3.1 Encoder
Encoder 部分的输入为原始的历史时间序列数据。Encoder 部分通过堆叠的基函数块来对历史数据进行编码,并逐步提取出时间序列中的各种波动和周期性。其中,每个基函数块都由若干个残差块组成,每个残差块又包含了若干个全连接层和非线性激活函数。
2.3.2 Decoder
Decoder 部分的输入为 Encoder 部分输出的编码结果以及预测的时间长度。Decoder 部分通过类似于 encoder 的方式来对编码结果进行解码,并根据预测的时间长度来生成未来的预测值。
2.4 Nbeats 模型优点
与传统的 ARIMA、VAR 和 Prophet 等时间序列模型相比,Nbeats 模型具有以下优点:
-
Nbeats 模型可以自适应地选择不同层面和不同时间窗口下的基函数,从而可以捕捉到时间序列中的各种波动和周期性。
-
Nbeats 模型采用了高度并行化的设计,可以大大提升计算效率。
-
Nbeats 模型支持多维时间序列的预测,在处理多个时间序列时具有较好的表现。
3. 结束语
本篇博客对 Nbeats 模型进行了详细的介绍,主要包括其模型结构、工作原理以及优点等方面。随着时间序列数据在各个领域的广泛应用,Nbeats 模型具有广阔的应用前景,并且可以为时间序列分析带来更加准确和可解释的结果。