2025年必看!多尺度深度学习创新思路轻松拿下顶会!

最近,多尺度不仅在检测和分割不同尺度目标方面至关重要,还显著提高了模型的参数使用效率,在各大顶会中备受关注。

新的一年,多尺度深度学习领域出现一些投稿方向,这些方向将推动研究人员在复杂任务中取得更高的性能,并在多个应用场景中展现出广泛的潜力。

为了方便大家研究,我整理了一些多尺度结合的相关论文,全部论文PDF版,工zhong号【沃的顶会】 回复 多尺度合集 即可领取。

· 多尺度Transformer

MSTF:Multiscale Transformer for Incomplete Trajectory Prediction

文章解析

论文提出了一种多尺度Transformer模型(MSTF),旨在解决不完整轨迹预测问题。

该模型通过引入多尺度特征提取和自注意力机制,有效地捕捉轨迹数据中的时空依赖关系,即使在输入信息不完全的情况下,也能提高轨迹预测的准确性。

实验结果表明,MSTF在多个基准数据集上优于现有的方法,展示了其在处理复杂动态场景中具有良好的性能和鲁棒性。

创新点

1.多尺度特征提取:提出了一种多尺度Transformer架构,能够同时捕获不同时间尺度下的轨迹特征,从而更全面地理解轨迹数据中的时空动态。

2.自注意力机制:利用自注意力机制来建模轨迹点之间的关系,使得模型能够聚焦于与当前预测相关的重要轨迹片段,即使在输入信息不完整的情况下也能保持良好的性能。

3.处理缺失信息的策略:引入了专门设计的损失函数,以优化模型对缺失轨迹信息的处理能力,从而提高预测的准确性和鲁棒性。

4.综合评估方法:在多个动态场景和基准数据集上进行了系统的实验验证,展示了该方法在不完整轨迹预测任务中的优越性,相较于现有技术具有显著提升。

图片

· 多尺度时序

Time Series Prediction Based on Multi-Scale Feature Extraction

文章解析

本文讨论了一种新的时间序列预测模型,叫做MSFformer,旨在更好地分析和预测数据,如气象和金融数据。

该模型结合了长期和短期的趋势,使用金字塔结构提取不同时间尺度的信息,从而提高预测的准确性。

实验结果显示,MSFformer在预测效果上显著优于传统方法,尤其是在捕捉长期变化和短期波动方面表现出色。

创新点

1.多尺度特征提取:模型通过金字塔结构整合了多种时间尺度的信息,增强了预测能力。

2.提升效率:Skip-PAM机制有效降低了模型的计算负担,使得在处理大数据时更加高效。

3.性能提升:实验结果显示在MAE和MSE指标上显著优于传统Transformer模型,展示了其在复杂数据处理中的优势。

图片

全部论文PDF版,工zhong号【沃的顶会】 回复 多尺度合集 即可领取。

· 多尺度卷积

RepNeXt A Fast Multi-Scale CNN using Structural Reparameterization

文章解析

本文提出RepNeXt,一款新型多尺度CNN模型。

通过结构重参数化结合ViTs的宏架构与CNN的层次设计,提升了模型在资源受限环境下的效率。

实验结果表明,RepNeXt在多种视觉任务中表现出色。

创新点

1.提出RepNeXt模型,实现多尺度特征表示与ViTs结构的融合。

2.采用结构重参数化技术,提高模型效率和性能。

3.在资源受限的移动视觉任务中,表现出卓越的性能。

图片

· 多尺度YOLO

FUSED ATTENTION MECHANISM -BASED ORE SORTING NETWORK

文章解析

本文提出了一种名为OreYOLO的方法,该方法结合了注意力机制和多尺度特征融合策略,用于金矿和硫化矿的高效准确识别。

通过引入渐进特征金字塔结构和嵌入注意力机制,显著提高了模型的检测性能和准确性。

此外,为了适应多样化的矿石分类场景和边缘设备的部署需求,网络结构设计为轻量级,实现了低参数量和计算复杂度,同时保持高精度。

创新点

1.提出了OreYOLO方法,结合了注意力机制和多尺度特征融合策略,显著提高了矿石分类的检测性能和准确性。

2.设计了轻量级网络结构,实现了低参数量(3.458M)和计算复杂度(6.3GFLOPS),同时保持高精度(99.3%和99.2%)。

3.引入渐进特征金字塔结构和嵌入注意力机制,解决了轻量级网络中特征提取不足的问题。

图片

全部论文PDF版,工zhong号【沃的顶会】 回复 多尺度合集 即可领取。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值