最强组合!Mamba+时间序列,准确率接近100%!

时间序列预测领域,Mamba架构正不断突破技术瓶颈,为精确预测提供了新的方向。近期的研究成果表明,Mamba架构通过引入双向结构、遗忘门以及自适应策略选择等创新点,显著提升了时间序列预测的性能。例如,Bi-Mamba+模型采用双向建模结构,增强了历史信息的保存和长短期依赖的捕捉能力;而DTMamba则通过双TMamba模块,有效捕捉时间数据中的长期依赖关系。

这些创新不仅提高了预测的准确性,还保持了较低的计算开销。我整理了10篇关于【Mamba+时间序列预测】的相关论文,全部论文PDF版,工中号 沃的顶会 回复Mamba时序即可领取~

Hierarchical Information-Guided Spatio-Temporal Mamba for Stock Time Series Forecasting

文章解析 

本文提出了一种新的框架HIGSTM,通过引入指数引导频率滤波分解方法提取时间序列的共性和特性,并结合层级信息引导的时空Mamba结构,有效捕捉股票市场的动态和静态关系,从而提升股票时间序列预测性能。

创新点 

提出了一种Index-Guided Frequency Filtering Decomposition方法以提取时间序列的共性和特性。

设计了Hierarchical Information-Guided Spatio-Temporal Mamba结构,从多个视角提取节点相关关系和宏观信息。

通过动态和静态信息聚合改进了Mamba的序列选择机制。

研究方法 

利用指数引导频率滤波分解将股票时间序列和指数转换到频域并进行分解。

构建了TIGSTM模块,通过序列特异性构建稀疏时变关系图并聚合动态邻域信息。

设计了GIGSTM模块,整合全局静态信息以形成全面的邻域聚合和增强序列选择指导。

在CSI500、CSI800和CSI1000数据集上进行了实验验证。

研究结论 

HIGSTM在多个真实股票数据集上表现出最先进的性能。

提出的分解方法和层级结构能有效捕捉股票市场的动态和静态关系。

信息引导的Mamba结构提升了模型的市场感知能力。

1744618758364.jpg

Mamba time series forecasting with uncertainty propagation

文章解析 

本文提出了一种基于Mamba架构的双网络框架Mamba-ProbTSF,用于概率时间序列预测。

该方法通过一个网络生成点预测,另一个网络估计预测不确定性(建模方差),并在合成和真实数据集上验证了其有效性。

创新点 

提出了Mamba-ProbTSF,一种结合点预测和预测不确定性的双网络框架。

通过Kullback-Leibler散度评估模型性能,展示了在真实数据上的收敛性。

证明了预测轨迹在电力消耗和交通占用基准中95%的时间内处于两倍标准差范围内。

研究方法 

使用Mamba架构作为基础,构建双网络框架分别处理预测值和不确定性。

假设未来值的条件分布为高斯分布,以预测均值为中心,方差由预测标准差平方给出。

通过优化损失函数训练模型,并在合成与真实数据集上进行验证。

研究结论 

Mamba-ProbTSF能有效降低预测误差并量化不确定性。

在真实世界基准测试中,模型预测的不确定性区间覆盖了实际轨迹的95%。

此框架适用于部分或完全随机的动力学过程,例如布朗运动或分子动力学轨迹。

1744618962827.jpg

### Mamba 模块的时间序列处理功能与使用教程 #### 1. **Mamba时间序列建模能力** Mamba 是一种高效的深度学习框架,特别适用于大规模序列建模任务。它在处理长序列方面表现出显著的优势[^2]。以下是其核心特点及其与时间序列相关的功能: - **高效性**:Mamba 利用了先进的状态空间模型 (State-Space Models),能够在保持高精度的同时降低计算成本。 - **灵活性**:支持多种类型的输入数据,包括但不限于时间序列、文本和其他结构化数据。 #### 2. **安装与环境配置** 为了使用 Mamba 进行时间序列分析,需先完成必要的依赖项安装。可以通过 `mamba` 或者 `pip` 来快速设置开发环境。以下是一个典型的安装命令: ```bash mamba install git+https://gitcode.com/gh_mirrors/ma/mamba ``` 如果需要更灵活的控制,也可以克隆官方仓库并手动编译: ```bash git clone https://gitcode.com/gh_mirrors/ma/mamba cd mamba pip install . ``` #### 3. **基本用法示例** 下面提供了一个完整的代码示例,演示如何加载预训练的 Mamba 模型并对时间序列数据进行前向传播操作。 ```python import torch from model import Mamba # 加载预训练模型 model = Mamba.from_pretrained('state-spaces/mamba-370m') # 构造模拟的时间序列数据 batch_size = 1 # 批量大小 seq_length = 10 # 序列长度 input_dim = 512 # 输入维度 input_data = torch.randn(batch_size, seq_length, input_dim) # 前向传播 output_data = model(input_data) # 输出形状验证 print(f"Output Shape: {output_data.shape}") ``` 上述代码展示了如何初始化一个预训练好的 Mamba 模型,并将其应用于随机生成的时间序列数据上。最终输出的结果会保留相同的批量大小和序列长度,但可能改变特征维度以适应下游任务的需求。 #### 4. **自定义时间序列混合方法** 对于某些特殊场景下的时间序列任务,可能需要引入额外的数据增强策略来提升泛化性能。例如,通过线性组合多个已知样本创建新的合成实例是一种常见做法[^4]。具体实现如下所示: ```python def generate_mixed_time_series(data_list, lambdas): """ 根据给定权重生成混合时间序列 参数: data_list (list): 包含 k 条原始时间序列片段的列表 lambdas (list): 对应每条片段的非负归一化系数 返回: mixed_sequence (torch.Tensor): 合成后的单条时间序列 """ assert len(data_list) == len(lambdas), "Data and lambda lengths must match" assert abs(sum(lambdas) - 1.0) < 1e-6, "Lambdas should sum to one" mixed_sequence = sum([l * d for l, d in zip(lambdas, data_list)]) return mixed_sequence.unsqueeze(0) # 添加批次维度 # 示例应用 data_samples = [torch.randn(seq_length, input_dim) for _ in range(3)] weights = [0.2, 0.5, 0.3] mixed_sample = generate_mixed_time_series(data_samples, weights) print(mixed_sample.shape) ``` 此函数允许用户指定任意数量的基础时间序列以及相应的贡献比例,从而构建更加多样化且复杂的训练集。 #### 5. **评估与可视化** 当完成模型训练之后,通常还需要对其预测效果加以检验并与真实值对比。考虑到大多数情况下都会涉及数值范围差异较大的情况,因此建议始终采用标准化手段统一尺度后再绘图展示结果[^3]。 ```python import matplotlib.pyplot as plt plt.figure(figsize=(10, 6)) plt.plot(true_values, label="True Values", color='blue') plt.plot(predicted_values, label="Predictions", linestyle="--", color='red') plt.legend() plt.title("Time Series Prediction Results") plt.xlabel("Sequence Index") plt.ylabel("Normalized Value") plt.grid(True) plt.show() ``` 以上脚本可以帮助直观理解两者之间的匹配程度,进而指导后续优化方向的选择。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值