yolov8训练中出现问题

AMP: checks failed ❌. Anomalies were detected with AMP on your system that may lead to NaN losses or zero-mAP results, so AMP will be disabled during training. 
torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 74.00 MiB. GPU

即GPU 显存不足

解决办法:

  1. 降低图像尺寸:若你当前设置的图像尺寸是 1024x1024 像素。尝试减小 imgsz 参数的值,例如减小到 512 或 640 像素,这样可以减少每次迭代所需的显存。

  2. 减少批量大小:批量大小(batch 参数)影响每次迭代中处理的图像数量。减小批量大小可以减少每次迭代所需的显存。

  3. 使用更多的数据加载器工作进程:通过增加 workers 参数的值,可以提高数据加载的效率,但这也可能增加内存的使用。如果你的 CPU 资源充足,可以尝试增加这个值。

  4. 关闭自动混合精度(AMP):错误信息中提到 AMP 检测失败,这可能影响训练的稳定性。你可以尝试手动关闭 AMP,即使用命令行参数 --amp False

  5. 优化数据加载:确保数据加载和预处理步骤尽可能高效,避免不必要的内存使用。

  6. 清理显存:在训练前关闭不必要的应用程序和进程,确保 GPU 显存尽可能多地被释放。

  7. 使用具有更多显存的 GPU:如果可能的话,尝试使用具有更多显存的 GPU,例如从 GTX 1080 Ti 切换到更高级的 GPU。

  8. 检查代码和模型:有时候,显存不足可能是由于代码中的内存泄漏或模型中的某些操作导致的。检查代码和模型定义,确保没有不必要的显存占用。

  9. 分阶段训练:如果模型非常大,可以考虑分阶段训练。先训练模型的一部分,然后逐步增加训练的复杂性。

  10. 使用显存监控工具:使用如 nvidia-smiTensorBoard 等工具监控显存使用情况,以便更好地理解显存不足的原因。

### YOLOv8 训练中 NaN 的成因与解决方案 在目标检测框架YOLOv8训练过程中,损失函数值变为NaN是一个常见问题[^1]。这不仅影响模型收敛速度还可能导致最终结果失效。 #### 成因分析 NaN通常由数值溢出引起,在反向传播计算梯度时发生异常大或小数值得操作。具体原因可能涉及以下几个方面: - **数据预处理不当**:输入图像存在极端像素值或者标注框坐标超出范围。 - **超参数设置不合理**:学习率过高、批量大小不合适等都会引发不稳定更新。 - **硬件兼容性问题**:某些型号显卡可能存在浮点运算精度不足的情况[^2]。 - **混合精度训练配置错误**:如果启用了自动混合精度(AMP),但未能正确配置,则容易造成数值不稳[^5]。 #### 解决策略 针对上述情况,可采取以下措施来提高训练稳定性并防止出现NaN: ##### 调整超参数 降低初始学习率有助于减缓权重更新幅度,从而避免过早发散。可以通过调整`lr0`参数实现这一点。另外适当增加动量(`momentum`)也有助于稳定优化过程。 ```python model = YOLO('yolov8n.pt') model.train( data='coco128.yaml', epochs=100, imgsz=640, lr0=0.01, # 尝试更小的学习率 momentum=0.937 # 增加默认动量值 ) ``` ##### 数据清洗与标准化 确保所有训练样本都经过严格筛选和规范化处理,去除任何可疑的数据点。对于图片类任务而言,建议采用Z-score或其他方式对RGB通道分别做归一化变换。 ##### 显卡适配策略 当使用特定系列如NVIDIA GTX 16XX Super这类较旧架构的GPU时,考虑关闭自动混合精度支持以增强数值稳健性。可通过修改配置文件中的`amp`选项完成此操作。 ```yaml train: amp: false # 关闭自动混合精度 ``` ##### 监控中间变量 定期保存checkpoint并在每轮迭代结束后检查关键指标的变化趋势。一旦发现潜在风险信号即刻中断程序运行以便及时排查隐患。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值