基于灰色神经网络的订单需求预测代码

 

目录

1 概述

2 代码

3 结果

​编辑


1 概述

BP(Back Propagation)神经网络模型是一种信息前向传播,误差反向传播的神经网络模型0,能够通过训练样本反向传播调节网络的阈值和权值,使误差平方最小。 BP神经网络是目前应用最广泛的神经网络模型之一。

灰色人工神经网络模型建模过程:

(1)利用GM(1,1)模型得到预测值。

(2)利用误差平方和负梯度下降原理进行阈值和权值修正,使误差平方和小于目标值。

(3)利用灰色神经网络模型计算得到预测值,并验证模型的外推性,利用预测模型预测原始数据最后K项数据,分析预测值与实际值的相对误差。

(4)在外推性可靠的情况下对未来数据进行预测。

2 代码

%计算预测的每月需求量
for j=36:-1:2
    ys(j)=(yc(j)-yc(j-1))/10;
end

figure(2)
plot(ys(31:36),'-*');
hold on
plot(X(31:36,1)*10000,'r:o');
legend('灰色神经网络','实际订单数')
title('灰色系统预测','fontsize',12)
xlabel('月份','fontsize',12)
ylabel('销量','fontsize',12)

3 结果

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值