💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
文献来源:
摘要:运行中的输电线路发生故障时,会在故障点产生向两侧传播的电流行波和电压行波。电流行波和电压行波又统称为故障行波,故障行波会在阻抗不连续点发生折射和反射,由此可以通过采集并分析故障行波得到线路故障信息。利用相模变换对三相电流行波进行解耦,通过解耦后得到的独立模量之间的关系可以确定故障类型和故障相,再利用小波变换模极大值的方法标定行波波头,通过波头信息可以得到故障点距离。仿真结果显示,该方法能准确地确定故障类型和故障相,对故障点距离的定位也能达到很高的精度。
关键词:
该程序深度复刻了学术文献《基于行波理论的输电线路故障诊断方法探究》中的核心理论,巧妙利用了故障行波(包括电压行波和电流行波)在阻抗突变点所展现出的独特反射与折射现象。为了实现这一理论的实践应用,研究团队精心依托Simulink这一强大的仿真平台,构建了一个高度精确的模型,该模型能够全面且细致地收集输电线路在发生故障时的关键数据,特别是输电线路两端的电流与电压信息,这些数据是后续分析的基础。
在数据收集完成后,研究团队利用精心编写的M文件对这些宝贵的故障数据进行了深入的处理与分析。通过运用Karenbauer变换这一专业工具,他们成功地从复杂的故障电流中提取出了线模分量与零模分量,同时,也精确地获取了输电线路两端电压的线模分量。这些分量对于后续的诊断过程至关重要。
为了进一步细化分析,研究团队又采用了小波变换这一前沿技术,对线模分量进行了精细的分解。这一步骤使得他们能够准确地识别出行波波头,这是确定故障位置的关键信息。基于这些信息,研究团队最终成功地计算出了故障在输电线路上的具体位置。
值得一提的是,该仿真模型不仅重现精度高,而且代码注释详尽,即便是非专业人士也能够通过阅读注释理解模型的运作原理。此外,研究团队还贴心地配备了全面的操作指南,使得其他研究人员能够轻松上手,进行深入的参考与研究。这一成果无疑为输电线路故障诊断领域的研究提供了极大的便利与推动。
详细文档见第四部分下载:
故障相判定原理主要是对比故障后与故障前的行波信号,将故障后采集到的行波信号减去故障前正常的行波信号,从而得到故障附加行波信号,通过相模变换,得到附加行波的模值,从而对故障类型进行精准辨识。
故障附加电流行波信号计算方法:
通过相模变换得到附加行波的模值:
从而按照以下方式判定系统故障类型:
📚2 运行结果
2.1 整体模型
simulink模型结构和原文一致,原文中输电线路电压为110kV,该模型中电压为220kV。输电线路总长度为200km,故障点设置距离L端90km,距离R端110km,AC相间短路运行结果显示,“A、C两相短路但不接地故障,且距离L端89775.8835米”,测量误差仅为0.112%,可见精度非常高。(程序可以按照操作文档自行设置单相短路、两相接地、三相短路但不接地和两相短路但不接地等故障类型进行设置)
2.2 正常运行L端三相电流波形
2.3 发生故障时L端三相电流波形
2.4 L端故障电流行波
2.5 发生故障时L端故障电流α分量
2.6 发生故障时L端故障电流β分量
2.7 发生故障时L端故障电流γ分量
2.8 发生故障时L端故障电流零模分量
2.9 发生故障时L端故障电流分量汇总
2.10 L端电压行波α分量1~7层小波重构与残差结果
2.11 L端电压行波α分量重构D1结果
2.12 R端电压行波α分量重构D1的模极大值提取结果
部分代码:
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
[1]李立江,林海,王佳,等.基于行波理论的输电线路故障诊断方法研究[J].软件工程,2022,25(07):9-14+8.DOI:10.19644/j.cnki.issn2096-1472.2022.007.003.
🌈4 Simulink仿真、文档下载
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取