基于脉冲雷达信号的路径损耗(PLA)和联合概率数据关联(JPDA)算法用于室内多人跟踪的脉冲无线电超宽带(IR-UWB)雷达(Matlab、Python代码实现)

   💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

📚2 运行结果

🎉3 参考文献 

🌈4 Matlab代码、Python代码、数据下载


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能解答你胸中升起的一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

基于脉冲雷达信号的路径损耗(PLA)和联合概率数据关联(JPDA)算法用于室内多人跟踪的脉冲无线电超宽带(IR-UWB)雷达研究

摘要

脉冲无线电超宽带(IR-UWB)雷达因其高距离分辨率而在室内环境中被广泛应用于多人跟踪。联合概率数据关联(JPDA)算法被设计用于将轨迹与人员关联,但在多径杂波和轨迹融合的挑战下,其性能受到限制。本文提出了一种基于路径损耗的自适应联合概率数据关联算法(PLA-JPDA),该算法能有效抑制多径杂波,并通过调整验证门限和关联概率权重来优化跟踪性能。实验结果表明,PLA-JPDA在平均均方根误差(RMSE)和最优子模式分配(OSPA)距离方面均优于传统的JPDA和最近邻JPDA(NN-JPDA)。

路径损耗模型

路径损耗是无线通信中的一个重要参数,描述了信号强度随传播距离增加而衰减的现象。在UWB系统中,由于其独特的脉冲形状,路径损耗与传统窄带通信系统有所不同。研究表明,UWB脉冲信号在室内环境中的路径损耗特性可以通过5射线模型进行分析,该模型考虑了直射、地面反射、天花板反射和两侧墙面反射等主要路径。

路径损耗的计算方法

路径损耗通常使用对数距离功率定律来建模,该定律包含对数正态大尺度衰落项。然而,实际测量中,接收信号可能受到测量系统动态范围和噪声底的影响,导致测量样本被截断或审查。为了解决这一问题,可以使用Tobit最大似然估计算法,该算法能在某些条件下为路径损耗参数提供一致的估计值。

联合概率数据关联算法

联合概率数据关联(JPDA)是一种用于多目标跟踪的算法,特别适用于处理多个目标相互靠近的情况。JPDA通过考虑所有可能的轨迹组合来最大化跟踪的准确性和可靠性。然而,传统的JPDA在面对复杂室内环境中的多径杂波和轨迹融合问题时,其性能会受到限制。

PLA-JPDA算法的提出

为了克服这些挑战,本文提出了基于路径损耗的自适应联合概率数据关联算法(PLA-JPDA)。该算法利用路径损耗信息来抑制多径杂波,并通过调整验证门限和关联概率权重来优化跟踪性能。具体来说,PLA-JPDA根据雷达信号的距离依赖性路径损耗来抑制多径杂波,从而提高跟踪的准确性和可靠性。

实验验证

为了验证所提出的PLA-JPDA算法的有效性,本文在实际室内环境中进行了实验。实验中使用三台IR-UWB雷达跟踪两个人,这两个人沿着平行线相互靠近移动。实验结果显示,使用PLA-JPDA进行跟踪的平均均方根误差(RMSE)为0.14米,分别是使用JPDA和最近邻JPDA(NN-JPDA)进行跟踪的平均RMSE的18.7%和13.7%。此外,PLA-JPDA在最优子模式分配(OSPA)距离方面也优于JPDA和NN-JPDA。

结论

本文提出的基于路径损耗的自适应联合概率数据关联算法(PLA-JPDA)在室内多人跟踪中表现出色,特别是在处理多径杂波和轨迹融合方面具有显著优势。通过实验验证,PLA-JPDA在跟踪精度和OSPA距离方面均优于传统的JPDA和NN-JPDA,证明了其在实际应用中的有效性和可靠性。未来的研究可以进一步探索PLA-JPDA在不同室内环境下的性能,以及如何进一步优化算法以提高其鲁棒性和实时性。

📚2 运行结果

部分代码:

% PLA-JPDA for multi-person tracking
%% PL-based multipath suppression
load('../result/crslt1.mat');
crslt = crslt(46:245,:);  % obtain the valid signal
P = crslt.^2;
[r,c] = size(P);
ht = P;
cm = zeros(size(P));
gamma = 2.8;  % a exponent related to the environment
distWhole = (1:c);
dr = 1/156; % distance resolution
for i = 1:r
    [pk,loc] = max(P(i,:));
    thrs = 0;

    while pk>0
        cm(i,loc) = 1;
        ht(i,loc) = 0;
        indx = find(ht(i,:)>0);
        if isempty(indx)

🎉3 参考文献 

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)

[1]任志远.脉冲超宽带通信系统同步与信道估计研究[D].北京邮电大学,2011.

[2]马龙.一种新的基于混沌脉冲位置调制的UWB-IR通信系统[J].解放军理工大学学报:自然科学版, 2007, 8(4):5.

🌈Matlab代码、Python代码、数据下载

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值