基于Benders、TSO-DSO协调的不确定性的输配电网双层优化模型研究(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

基于Benders分解与TSO-DSO协调的输配电网双层优化模型研究

一、Benders分解法在输配电网优化中的应用基础

二、TSO-DSO协调机制的核心要素

三、不确定性建模方法

四、输配电网双层优化模型的结构与交互机制

五、典型约束条件与求解挑战

六、实际案例与仿真验证

七、未来研究方向

结论

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码、数据、文献


💥1 概述

随着可再生能源的增加,对应运营灵活性的需求也增加。现有的灵活性采购方案设想了供电系统运营商(TSO)和配电系统运营商(DSO)之间的协调,但这方面的研究仍在进行中。我们提出了一种日前协调的方法,称为互补模型,用于共享灵活资源。该方法优化了TSO和DSO之间的物理接口处的价格和容量限制。DSO通过限制其资源在日前市场的参与来满足系统约束条件。我们使用多段Benders分解方法对模型进行分解,以追求计算可行性。我们量化了协调方法的潜在收益,并通过事后模拟评估了其性能。我们引入了一个新的代理机构,称为接口优化器,来负责优化协调变量。我们提出的方法展示了TSO和DSO协调的潜力空间,并且我们将其视为一种工具,用于改善部门协调。接下来的问题是如何为接口优化器开发一个适当的数学工具,以确定最佳的协调变量。我们提出了一个双层优化模型,其中领导者是接口优化器,跟随者是DSO和市场。我们使用多割Benders分解算法对简化的双层问题进行分解。我们使用后验外样本模拟来评估协调方法的性能。

基于Benders分解与TSO-DSO协调的输配电网双层优化模型研究

一、Benders分解法在输配电网优化中的应用基础

Benders分解法自1962年提出以来,因其对复杂变量分阶段处理的能力,成为电力系统大规模优化问题的核心工具。其核心思想是将原问题分解为 主问题(整数变量) 和 子问题(连续变量) ,通过迭代生成可行性或最优性切割(Benders割)逐步逼近全局最优解。在输配电网优化中,其典型应用包括:

  1. 机组组合(UC)与检修调度
    在发输电检修联合决策模型中,Benders分解将问题分解为 主问题(检修计划) 、 潮流子问题(安全校验) 和 辅助问题(关联性判别) ,通过割约束传递信息,降低寻优维度。例如,文献[6]通过模式识别筛选子问题,显著减少计算量。

  2. 无功优化与规划
    采用Benders分解法处理混合整数非线性规划问题,将无功补偿容量(整数变量)与潮流计算(连续变量)分离,通过“投资-运行”子问题迭代确定最优配置。双重变量λ在此过程中反映无功设备的边际成本变化。

  3. 不确定性处理改进
    传统Benders分解在应对不确定性时存在收敛慢、切割效率低的问题。改进方法如多割Benders分解(Multi-cut Benders)通过同时生成多个割约束加速收敛,适用于风光出力随机性强的场景。

二、TSO-DSO协调机制的核心要素

TSO(输电系统运营商)与DSO(配电系统运营商)的协调需解决全局优化与局部自治的矛盾,具体机制包括:

  1. 协调层次与目标

    • 垂直协调(TSO-DSO) :平衡全网安全性与本地经济性,如通过灵活性市场共享分布式资源(DERs)的调节能力。
    • 水平协调(TSO-TSO或DSO-DSO) :处理跨区域备用共享与阻塞管理。
  2. 市场机制设计

    • 互补模型:通过日前市场优化价格与容量限制,DSO限制资源参与市场以满足网络约束,TSO统筹全局供需。
    • 区块链与智能合约:利用区块链数据库实现透明化交易记录与自动结算,提升协调可信度。

  3. 协调流程
    涵盖资质预审-采购-激活-结算四个阶段,需明确角色分工、信息共享规则及业务流程。例如,欧盟示范项目通过理论市场框架(TMF)标准化产品设计与灵活性机制。

三、不确定性建模方法

针对风光出力与负荷波动,主流方法包括:

  1. 随机规划(Stochastic Programming)

    • 场景法:生成典型场景(如风电出力高/中/低)表征不确定性,平衡计算效率与解的质量。
    • 机会约束规划:允许一定概率下违反约束,降低保守性。
  2. 鲁棒优化(Robust Optimization)

    • 传统鲁棒优化:基于不确定集合求最坏情况下的最优解,适用于安全性要求高的场景。
    • 分布鲁棒优化(DRO) :结合概率分布与不确定集合,通过模糊集降低解的保守性。
  3. 双层模型中的不确定性传导
    上层模型考虑长期不确定性(如投资决策),下层模型处理短期波动(如实时调度),通过Benders割传递风险信息。

四、输配电网双层优化模型的结构与交互机制
  1. 模型结构

    • 上层(TSO主导) :以全网经济性为目标,决策输电侧机组出力、检修计划及市场交易。
    • 下层(DSO主导) :以配电网安全运行为目标,优化分布式电源出力、储能调度及需求响应。
  2. 决策变量耦合

    • 功率交互变量:如TSO与DSO边界节点的交换功率,需满足上下层潮流平衡。
    • 价格信号:上层电价影响下层DERs的响应策略。
  3. 求解流程
    采用Benders分解框架:

    • 主问题:确定上层决策(如机组启停、检修计划),生成试探解。
    • 子问题:校验下层可行性(如配网潮流、电压约束),生成割约束反馈至主问题。
    • 迭代终止条件:上下层目标函数差值小于阈值或达到最大迭代次数。
五、典型约束条件与求解挑战
  1. 物理约束

    • 潮流方程:采用DistFlow模型或线性化近似。
    • 电压与电流限制:节点电压偏差±10%,线路载流量不超过热稳定极限。
    • 网络拓扑:配电网需保持辐射状运行。
  2. 运行约束

    • 机组爬坡率与启停时间:影响UC问题的混合整数特性。
    • 储能充放电循环:SOC(荷电状态)约束与寿命损耗模型。
  3. 求解挑战

    • 子问题爆炸:海量DERs导致下层问题维度激增,需采用场景缩减或并行计算。
    • 非凸非线性:潮流方程的非凸性需通过二阶锥规划(SOCP)或凸松弛处理。
六、实际案例与仿真验证
  1. 互补模型与接口优化器
    文献[29]提出一种日前协调模型,引入接口优化器作为独立代理,优化TSO-DSO间的协调变量(如边界功率与价格)。通过多段Benders分解,算例显示计算时间减少30%以上,且阻塞费用降低15%。

  2. 发输电联合检修调度
    基于IEEE 118节点系统的仿真表明,Benders分解法在考虑N-1安全约束时,可将检修冲突减少40%,同时保证经济性。

  3. “源-网-荷-储”协同优化
    某实际配电网通过双层模型优化,峰谷差从71.7 MW降至51.4 MW,综合成本降低20,522元,验证了模型的有效性。

七、未来研究方向
  1. 算法改进:结合强化学习(如QMIX-TD3框架)处理高维决策空间。
  2. 市场机制创新:设计跨层级的灵活性产品,如动态备用容量交易。
  3. 不确定性精细化建模:融合数据驱动的分布鲁棒优化与物理约束。
  4. 输配协同规划:扩展至多时间尺度(如年-周-日)与多能源耦合。

结论

基于Benders分解与TSO-DSO协调的双层优化模型,通过分层迭代与割约束机制,有效协调了输配电网的全局经济性与局部安全性。在应对不确定性方面,结合随机规划与改进Benders算法可提升解的鲁棒性。未来需进一步探索跨层级市场机制与人工智能融合,以实现高比例可再生能源下的高效协同调度。

📚2 运行结果

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

🌈4 Matlab代码、数据、文献

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值