视频理解任务综述 & VLM多模态大模型概览

通用图像理解模型:图像分类、目标检测、图像分割

一文彻底搞懂多模态 - 多模态理解+视觉大模型+多模态检索_多模态大模型 图片理解-CSDN博客

视频理解中的三大基础领域:动作识别(Action Recognition)、时序动作定位(Temporal Action Localization)、视频Embedding

视频理解综述:动作识别、时序动作定位、视频Embedding(赠书)-腾讯云开发者社区-腾讯云

图像理解。图像理解任务涉及单张图像用于各种视觉推理任务,如图像标注和以图像为中心的问题回答。这些任务仅关注空间信息,包括对视觉上下文的粗略理解和对局部视觉细节的细致理解。

短视频理解。与仅涉及静态视觉数据的图像理解任务不同,短视频理解还结合了来自多个视觉帧的时间信息。除了空间推理,事件内的时间推理和跨帧的时空推理在短视频理解中发挥着至关重要的作用。

长视频理解。长视频通常持续数分钟甚至数小时,通常由多个事件组成,与短视频相比,包含更丰富的空间内容和时间变化。长视频理解不仅涉及空间和事件内的时间推理,还涉及事件间推理和来自不同视频事件的长期推理。

从秒级到小时级:TikTok等发布首篇面向长视频理解的多模态大语言模型全面综述_from seconds to hours: reviewing multimodal large -CSDN博客

参考:

视频分类综述-CSDN博客

AI生视频尝鲜-CSDN博客

CLIP模型和BLIP模型:

理解Cross Attention机制、CLIP模型、Q-Former机制和BLIP模型-CSDN博客

LLava:

【LLM多模态】LLava模型架构和训练过程 | CLIP模型_llava 训练-CSDN博客

LLaVA-1.5:强大的多模态大模型(包含论文代码详解)_llava 1.5 数据集-CSDN博客

一文读懂多模态大模型:LLaVA系列 | 从图像到视频的内容理解_llava模型-CSDN博客

GLM-4V:

【机器学习】GLM-4V:图片识别多模态大模型(MLLs)初探-CSDN博客

GLM-4V-Flash - 智谱 AI 推出的首个免费多模态模型API | AI工具集

Qwen-VL:

【中文视觉语言模型+本地部署 】23.08 阿里Qwen-VL:能对图片理解、定位物体、读取文字的视觉语言模型 (推理最低12G显存+)-CSDN博客

【机器学习】阿里Qwen-VL:基于FastAPI私有化部署你的第一个AI多模态大模型_qwenvl-CSDN博客

多模态大模型Qwen-VL和MiniCPM-Llama3-V-2_5初体验_qwenvl-CSDN博客

MLM之Qwen:Qwen2-VL的简介、安装和使用方法、案例应用之详细攻略_qwen2-vl使用-CSDN博客

Qwen-VL技术报告笔记_qwen vl-CSDN博客

qwenvl 以及qwenvl 2 模型架构理解_qwenvl与 qwen2vl的差别-CSDN博客

CogVLM:

CogVLM2:第二代视觉大模型,19B 即可比肩 GPT-4V-CSDN博客

智谱&清华联手打造:CogVLM2,全球顶尖开源视觉理解大模型!-CSDN博客

其他:

VideoLLaMA 2:多模态视频理解新突破,音频理解能力再升级,挑战 GPT-4V-CSDN博客

<think>好的,我现在需要帮助用户了解多模态大模型的AI基础设施或架构,以及部署方面的内容。首先,我得理解用户的具体需求。用户提到了多模态大模型的基础设施、架构和部署,可能他们正在考虑如何搭建或应用这样的系统,或者想深入了解其技术细节。 接下来,我需要回顾已有的知识。多模态大模型通常处理多种类型的数据,比如文本、图像、音频等,因此架构需要支持这些数据的处理和融合。根据之前提供的引用,用户提到了LLM和VLM,也就是大型语言模型和视觉语言模型,这可能涉及到不同模态的融合技术。 然后,我应该考虑架构的关键组成部分。通常,AI大模型的基础设施包括数据处理层、模型训练层、推理层、资源管理和部署工具。对于多模态模型,可能还需要专门的模块来处理不同模态的数据,比如图像编码器、文本编码器等。此外,硬件加速如GPU和TPU的使用也是重要部分,因为大模型需要强大的计算资源。 部署方面,需要考虑模型优化技术,比如量化、剪枝和蒸馏,以减少模型大小和提高推理速度。同时,分布式训练和推理框架也是必须的,例如使用TensorFlow或PyTorch的分布式训练功能。另外,云原生部署和边缘计算可能也是用户关心的点,特别是如果应用场景需要低延迟或离线处理的话。 用户可能还关心如何确保系统的扩展性和稳定性,比如资源调度和容错机制。此外,安全性和数据隐私在多模态应用中同样重要,尤其是在处理敏感信息时。 我需要确保回答结构清晰,分点说明每个部分,并且引用提供的参考文献。比如,引用[^1]提到AI大模型在自然语言处理、计算机视觉等方面的应用,这可以支持多模态的必要性。引用[^2]提到整合语言能力和视觉认知,这与多模态架构的设计相关。 最后,生成相关问题时要涵盖架构设计、优化、应用场景和挑战,帮助用户进一步探索。需要确保问题具有针对性,能够引导用户深入理解多模态大模型的各个方面。</think>### 多模态大模型的AI基础设施与架构解析 多模态大模型(如GPT-4、CLIP等)通过整合文本、图像、音频等不同模态的数据,实现跨模态理解与生成。其基础设施和架构设计需满足**大规模计算、异构数据处理、高效训练与推理**等需求。以下是核心架构组件及部署要点: --- #### 一、核心架构设计 1. **数据预处理层** - **多模态数据融合**:设计统一的数据表示(如向量嵌入),将文本、图像、音频映射到同一语义空间,例如通过对比学习(Contrastive Learning)对齐特征[^1]。 - **分布式存储**:使用分布式文件系统(如HDFS)或云存储(如AWS S3)管理海量异构数据。 2. **模型训练层** - **混合模态建模**:采用多编码器-单解码器架构(如Transformer),例如CLIP的图文双塔结构[^2]。 - **分布式训练框架**:基于PyTorch的`FSDP`(完全分片数据并行)或TensorFlow的`TPUStrategy`,支持千亿参数规模的训练。 3. **推理服务层** - **轻量化推理引擎**:通过模型剪枝、量化(如INT8)或知识蒸馏降低部署成本。 - **多模态交互接口**:提供统一的API网关,支持文本到图像生成、视频语义检索等跨模态任务。 --- #### 二、关键技术组件 1. **硬件加速** - 使用GPU集群(如NVIDIA A100)或TPU Pods进行并行计算,结合NVLink优化通信带宽。 2. **异构计算框架** - **计算图优化**:利用ONNX Runtime或TensorRT加速模型推理。 - **跨模态对齐工具**:如FAISS库实现大规模向量相似性检索。 3. **资源管理与调度** - 基于Kubernetes的容器化部署,结合Slurm或Ray实现动态资源分配。 --- #### 三、部署实践与挑战 1. **云原生部署** - 通过AWS SageMaker、Google Vertex AI等平台实现弹性扩缩容,按需分配GPU资源。 2. **边缘计算优化** - 模型轻量化后部署至边缘设备(如手机、IoT设备),使用TensorFlow Lite或Core ML框架。 3. **安全与隐私** - 联邦学习(Federated Learning)保护数据隐私,结合同态加密(HE)实现安全推理。 --- #### 四、典型应用场景 1. **医疗诊断**:结合医学影像与文本报告生成诊断建议[^1]。 2. **智能客服**:同时理解用户的语音、文本和图像输入。 3. **工业质检**:通过视觉+传感器数据实现缺陷检测[^2]。 --- 相关问题
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值