L4.2 Local Search(局部搜索)

Local Search(局部搜索) 


1. 英文复述 (English Restatement)

  1. Definition
    Local Search is a search technique that focuses on a single current state rather than exploring a tree of multiple paths. It uses an objective function (or evaluation function) and attempts to improve the current state by moving to a “neighboring” state with a better score.

  2. Key Idea

    • Instead of recording or following an entire path from the initial state to the goal, local search only retains the current configuration.
    • Moves are made to one of the neighbor states, i.e., states that can be reached by a small, local modification of the current state.
  3. Advantages

    • Very Low Memory Usage: Only the current state and some auxiliary info are stored.
    • Scales to Large/Infinite Spaces: Systematic (tree-based) searches become infeasible for huge state spaces, whereas local search can handle them, though not guaranteed to find a globally optimal solution.
  4. Completeness & Optimality

    • Completeness: Most local search methods are incomplete; they may get stuck in local maxima, plateaus, or ridges. A “complete” local search would always reach a goal if one exists, but that is rare.
    • Optimality: Local search rarely guarantees a global optimum. In theory, it may converge to suboptimal solutions. In practice, it often produces “good enough” solutions efficiently.
  5. Example

    • 8-Queens Problem: Instead of systematically building a path to place queens one by one, local search simply starts with a random arrangement of 8 queens and then iteratively tries to improve it (e.g., move a queen to reduce the number of conflicts).

2. 中文翻译 (Literal Chinese Translation)

  1. 定义
    局部搜索是一种只关注单个当前状态的搜索技术,不需要像其他搜索算法那样维护从初始状态到目标状态的整条路径。它通常依赖一个目标函数(或评估函数),并尝试通过转移到“邻居”状态来改进当前解的分数。

  2. 核心思想

    • 不记录或跟踪完整路径,仅仅保留当前配置
    • 移动时从当前状态向某个邻域状态转变,即对当前状态做一次“小范围修改”后得到的新状态。
  3. 优点

    • 内存占用极少:只需要存储当前状态和一些辅助信息。
    • 可应对超大或无限状态空间:系统化(基于树的)搜索在超大空间中常会失效,而局部搜索可以在这种环境下工作,尽管它并不一定能保证找到全局最优解。
  4. 完备性与最优性

    • 完备性:大多数局部搜索算法是不完备的,可能困于局部最优、平台(plateaus)或凸起(ridges)等地形结构。真正的“完备”局部搜索比较少见。
    • 最优性:局部搜索通常不保证全局最优解;理论上可能收敛到次优解。但是在实际应用中,它往往能在可接受的时间内给出“足够好”的可行解。
  5. 示例

    • 8 皇后问题:与其系统地构造从无到有的完整摆放方案,不如先随机给定一个 8 皇后的排列,然后通过“局部调整”来减少皇后之间的冲突,逐步逼近正确解。

3. 中文通俗解释 (Chinese Plain Explanation)

想象你要解决一个“大海捞针”的问题,状态空间特别大,用常规的穷举或树搜索可能根本算不动。“局部搜索”就像带着一把放大镜,只关注你当前在哪里,尝试周围一点点的改变,看看能不能让结果更好。

  • 例如,解决 8 皇后:先随便把皇后都摆好,然后每次挪动一个皇后,让冲突数变少。
  • 这种方法记忆体开销特别小,因为只关注“现在这步棋如何”,不用储存从头到尾的历史记录。
  • 它的缺点是,有时会被山峰(local maxima)或高原(plateaus)困住,找不到真正的全局最佳解。
  • 但在实际应用里,局部搜索通常能在有限时间里给出还不错甚至很好的解。

4. 关键词 (Key Terms)

英文中文解释
Local Search局部搜索只存储当前状态并在其邻域中进行移动的搜索方式
Current State当前状态代表系统当前的配置,不记录路径
Neighbor (State)邻居(状态)通过一次小范围修改从当前状态得到的状态
Objective Function目标函数(或适应度函数)用来评估当前状态优劣的函数值(也可叫做 cost/fitness)
Local Maximum局部最大值在局部范围内优于周围状态,但并非全局最优
Plateau平台一大片区域里的目标函数值相同,搜索无法判断朝哪个方向能变好
Completeness完备性算法是否能保证找到目标(如果存在的话)
Optimality最优性算法是否能保证得到全局最优解

5. 英文记忆笔记 (English Memory Notes)

  1. Definition
    • Maintains one current state; moves to neighbors only.
  2. Advantages
    • Low memory: Only store the current state.
    • Feasible in huge/infinite spaces.
  3. Shortcomings
    • Usually incomplete: can get stuck in local maxima, ridges, or plateaus.
    • Rarely optimal: no guarantee of global optimum.
  4. Applications
    • 8-Queens, large optimization tasks (e.g., scheduling, traveling salesman approximations).
    • Provides “good enough” solutions quickly when the full path is irrelevant.

Tip: Local search is a practical choice when the final configuration matters more than the path itself, and when state spaces are extremely large.

 

Hill-Climbing Search(爬山法搜索) 


1. 英文复述 (English Restatement)

  1. Definition
    Hill-Climbing is a local search algorithm that iteratively moves from the current state to a neighboring state that maximizes (or at least improves) an evaluation function. It maintains no full path or search tree—only the current state and its objective value.

  2. Core Mechanism

    • Loop: Evaluate all neighbors → pick the “best neighbor” → if it’s better than current, move there; otherwise, stop.
    • “Going uphill” in the objective-function landscape, akin to climbing a hill.
  3. Drawbacks

    • Local Maxima: The algorithm might get stuck at a peak that is lower than the global maximum.
    • Plateaus: Regions of flat objective values that provide no direction for improvement.
    • Ridges / Shoulders: Slanted or narrow structures that are hard to climb using small steps.
  4. Random-Restart Hill-Climbing (RRHC)

    • To avoid being stuck at a local maximum or plateau, you can repeatedly restart from random initial states, keeping track of the best solution found.
    • This doesn’t guarantee a global optimum but often yields a reasonably good solution.
  5. Summary
    Hill-Climbing is a greedy local search. It is simple and memory-efficient but can fail to find the global optimum due to local maxima or flat regions. Random restarts can mitigate some of these issues.


2. 中文翻译 (Literal Chinese Translation)

  1. 定义
    爬山法(Hill-Climbing)是一种局部搜索算法,通过从当前状态转移到邻居状态中能让评估函数**最大化(或改进)**的那个状态来进行迭代。它不维护完整的搜索路径或树结构,仅存储当前状态及其目标函数值。

  2. 核心机制

    • 循环:评估所有邻居 → 选出“最佳邻居” → 如果该邻居比当前状态好,则移动到邻居;否则停止。
    • 类似于在目标函数的地形上“往上爬坡”,不断追求更高的值。
  3. 缺点

    • 局部最大值:算法可能停留在比全局最大值更低的峰顶上。
    • 高原:目标函数值相同的平坦区域,使得算法无从判断如何改进。
    • 山脊 / 肩部:倾斜或狭窄的结构,单步移动难以有效爬升。
  4. 随机重启爬山法(Random-Restart Hill-Climbing, RRHC)

    • 为避免困在局部最大值或高原,可以多次从随机初始状态开始运行爬山法,并记录最优解。
    • 虽然不保证找到全局最优,但往往能得到一个相对较好的解。
  5. 小结
    爬山法是一种贪心式的局部搜索。优点是简单、占用内存小,但易受局部极值或平台影响。使用随机重启可缓解部分问题。


3. 中文通俗解释 (Chinese Plain Explanation)

  • 怎么做:每次都看看当前状态附近哪儿更“好”(评估值更高),就挪一步过去。
  • 问题:可能爬到一座“小山顶”(局部最大)就以为到了终点,实际上山后面还有更高的山;或者遇到“一大片平地”(平台),看不到该往哪走。
  • 对策:多次“重新开始”,从不同随机位置继续“爬山”,希望能碰上更高的山顶。
  • 适用场景:只想快速找到一个还不错的解决方案,且不要求一定是全局最优,或状态空间比较大、内存有限时。

4. 关键词对照表 (Key Terms)

英文中文解释
Hill-Climbing (Search)爬山法(搜索)反复从当前状态移动到更优邻居状态的贪心式局部搜索
Neighbor (State)邻居(状态)与当前状态只差一个“小改动”的状态
Local Maximum局部最大值比周围状态高但非全局最优
Plateau高原/平台邻居状态的目标函数值都相同,无法判断如何改进
Random-Restart Hill-Climbing随机重启爬山法多次随机初始化以避免陷入局部极值或平台
Global Maximum全局最大值状态空间中最高点,对比局部最大值
Shoulder / Ridge肩部 / 山脊表面倾斜或狭窄且难以通过小步“爬”过去的区域

5. 英文记忆笔记 (English Memory Notes)

  1. Algorithm:

    • Loop: Evaluate neighbors → pick the highest-value neighbor → move or stop.
    • Only store current state + objective value.
  2. Weaknesses:

    • Stuck in local maxima.
    • Plateaus: no clear direction.
    • Ridges: narrow ascents are problematic.
  3. Improvement:

    • Random-Restart: Re-run hill-climbing from different random states, keep the best.
    • No global optimality guaranteed, but can yield good results.
  4. Use Cases:

    • Quick solutions where memory is limited and perfect optimality is not mandatory.

Hint: Hill-Climbing = “Greedy Local Search.” Think of it as repeatedly picking the best immediate step upward in a mountainous landscape, but be aware of potential traps (local peaks, plateaus).


1. 核心关系

  • Local search(局部搜索)​ 是一类搜索策略的总称,其特点是不维护完整路径,仅基于当前状态逐步优化,尝试找到最优解。
  • Hill-Climbing search(爬山算法)​ 是局部搜索中的一种具体实现方法,属于贪心策略的局部搜索算法。

类比

  • Local search 像“所有在附近找更好解的算法”的统称(如“交通工具”)。
  • Hill-Climbing 是其中一种具体工具(如“自行车”)。

2. 与图中搜索策略的对比

图中的 ​Uniformed search strategies(无信息搜索策略)​​(如BFS、DFS)与 ​Local search 有本质区别:

对比维度Uniformed Search(图中策略)​Local Search(包括爬山算法)​
目标找到从起点到目标的完整路径直接寻找最优解(不关心路径,只关注最终状态)
内存使用维护所有可能路径,内存消耗大仅维护当前状态,内存消耗小
适用场景路径规划、解空间较小的问题优化问题(如函数极值、参数调优)
是否保证最优解某些策略(如BFS、Uniform-cost)保证最优通常不保证全局最优(可能陷入局部最优)

3. Hill-Climbing 的特点(以例子说明)​

  • 核心思想:从当前状态出发,​不断向邻近的更好状态移动,直到无法改进。

  • 例子
    假设你要找一座山的最高点(目标),但你被蒙住眼睛(无全局信息),只能通过脚踩地面判断坡度:

    1. 每次向“上坡方向”走一步(贪心选择)。
    2. 直到四周都是下坡,则认为到达了山顶(可能是局部最高点,而非全局最高点)。
  • 缺陷:容易陷入局部最优(如停在一个小山丘,而非真正的最高峰)。


4. 为什么图中未直接提到 Local Search?

图中的搜索策略(如BFS、DFS)属于 ​Systematic Search(系统化搜索)​,特点是遍历所有可能路径,适用于结构化问题​(如迷宫、树状路径)。
而 Local search(如爬山算法)属于 ​Metaheuristic(元启发式)​,适用于解空间巨大或连续的问题​(如机器学习参数优化、旅行商问题),两者属于不同的搜索范式。


总结

  • Hill-Climbing 是 Local search 的子集,属于贪心型局部优化方法。
  • Local search 与图中策略互补
    • 系统化搜索(BFS/DFS)保证解但效率低,适合小规模问题。
    • 局部搜索(如爬山)效率高但不保证最优,适合大规模或复杂优化问题。

一句话记忆

图中策略是“地毯式排查”,Hill-Climbing是“摸黑爬山”;前者找路径,后者直接找最优解。

Local Beam Search

英文复述 (English Summary)

Design & Mechanism

  • Core Structure: Local Beam Search maintains ​k parallel current states (initially random), generating ​m successors per state (total ​m×k nodes) at each step.
  • Selection Strategy: If a goal state is found, terminate; otherwise, retain the ​top k successors from the combined ​m×k pool for the next iteration.
  • Visualization: Illustrated via a binary tree, where each depth level represents expanding states and pruning non-optimal paths.

Key Properties

  • Parallel Exploration: Avoids over-reliance on a single path (unlike Hill-Climbing).
  • Memory Efficiency: Only tracks ​k states per iteration, unlike systematic searches (e.g., BFS/DFS) that store all paths.
  • Risk of Premature Convergence: May discard globally optimal paths early if all k states cluster in a suboptimal region.

Example

  • Traveling Salesman Problem (TSP):
    • Use ​k=5 random routes.
    • Generate all possible route variations (e.g., swapping two cities) for each route.
    • Keep the 5 shortest routes and repeat until no improvement.

Applications

  • Natural Language Processing: Generate diverse text candidates in machine translation.
  • Combinatorial Optimization: Solve scheduling or resource allocation with multiple candidate solutions.
  • Genetic Algorithms: Beam search parallels population-based evolution strategies.

中文翻译 (Chinese Translation)

设计与机制

  • 核心结构:局部束搜索维护 ​k 个并行当前状态​(初始随机生成),每一步为每个状态生成 ​m 个后继节点​(总计 ​m×k 个节点)。
  • 选择策略:若找到目标状态则终止;否则从 ​m×k 个节点中保留 ​最优的 k 个 进入下一轮迭代。
  • 可视化:通过二叉树图示展示状态扩展和非最优路径剪枝。

核心性质

  • 并行探索:避免依赖单一路径(对比爬山算法)。
  • 内存高效:每轮仅追踪 ​k 个状态,优于存储全部路径的系统化搜索(如BFS/DFS)。
  • 早熟收敛风险:若所有 k 个状态聚集于次优区域,可能丢弃全局最优解。

示例

  • 旅行商问题(TSP)​
    • 初始生成 ​k=5 条随机路线。
    • 为每条路线生成所有可能变体(如交换两个城市)。
    • 保留最短的5条路线并重复,直到无法改进。

应用场景

  • 自然语言处理:机器翻译中生成多样化文本候选。
  • 组合优化:解决调度或资源分配问题。
  • 遗传算法:束搜索与种群进化策略类似。

中文通俗解释 (Plain Chinese Explanation)

一句话总结
局部束搜索像“团队分头探路”——派k个人随机出发,每走一步都让每个人尝试所有可能方向,然后集体投票选最好的k条路继续走。

生活例子

  • 情景:你在森林里迷路了,带着5条狗分头找出口。
    1. 初始化:5条狗随机朝不同方向跑(k=5)。
    2. 扩展:每条狗探索周围10条小路(m=10),共50条路径。
    3. 选择:从50条路中选5条离出口最近的,让狗继续探索。
    4. 终止:若有狗找到出口,成功;否则重复步骤2-3。

优缺点

  • 优点:人多力量大,避免“一个人走死胡同”;内存消耗小(只需记住5条路)。
  • 缺点:如果5条狗一开始全往错误方向跑,可能永远找不到正确出口。

英文记忆笔记 (English Memory Notes)

Design

  • k parallel states → Randomly initialized.
  • Expand m successors per state → Total ​m×k candidates.
  • Select top k → Prune non-optimal paths.

Properties

  • ✅ Parallelism → Avoid local optima traps.
  • ✅ Low memory → Only track k states.
  • ❌ Risk of missing global optimum → Depends on initial states.

Example

  • TSP: Keep top k shortest routes from m×k variations.

Applications

  • NLP: Text generation with diversity.
  • Scheduling: Optimize multiple candidate solutions.

Key Formula:
Next k states = Top k from (Current k × m successors)


总结记忆口诀

  • 英文“k states, m kids, pick the best, avoid the rest.”
  • 中文“k个状态生m娃,择优录取继续查。”

 

分步解释:什么是“随机k个”​

根据图中的二叉树示例和文字描述,以下是通俗解释:


1. “随机k个”指的是什么?
  • 定义:在算法开始时,​随机生成k个不同的初始状态​(即起点或候选解)。
  • 目的:避免所有搜索集中在同一区域,增加找到全局最优解的概率。

类比
假设你要在一片森林里找宝藏,但不知道宝藏的位置。

  • 传统爬山算法:你一个人随机选一个方向开始找,可能困在局部区域。
  • 局部束搜索:你雇佣了k个助手(如k=3),每个助手随机选一个方向出发,分开探索。

2. 图中的具体示例

根据图中文字和二叉树结构:

  • 初始状态(Depth 1)​:随机生成k=2个状态(图中标注为A和D)。
  • 这两个状态的位置
    • A和D可能代表不同的路径起点(如迷宫的不同入口)。
    • 也可能代表同一问题中不同的候选解(如旅行商问题中的两条随机路线)。

例子​(以数值为例):

  • 初始随机生成两个状态A(代价10.4)和D(代价8.9)。
  • 算法会同时探索A和D的后续路径,而非只选其中一个。

3. 为什么需要“随机生成”?
  • 避免初始偏见:如果所有k个状态都从同一个起点开始,可能错过其他区域的更优解。
  • 探索多样性:随机分散的初始状态能覆盖解空间的不同区域,减少陷入局部最优的风险。

对比场景

  • 单一起点(如爬山算法)​
    若起点附近有局部最优解(小山丘),算法可能困在此处。
  • 随机k个起点(束搜索)​
    即使部分状态陷入局部最优,其他状态仍可能在更优区域继续搜索。

4. 与“起点不一样”的关系
  • 若问题有明确起点​(如迷宫入口唯一):
    “随机k个”指从该起点出发,生成k条不同的初始路径(例如随机走前几步)。
  • 若问题无明确起点​(如优化问题):
    “随机k个”指在解空间中随机生成k个候选解(如随机参数组合)。

示例

  • 迷宫问题
    k=3,随机生成三种不同的初始路径(如先左转、先右转、先直行)。
  • 函数优化
    k=5,随机生成五个不同的初始参数值组合。

通俗总结

  • ​“随机k个” = 多个人分头找路
    算法开始时,随机派k个“探路者”从不同位置(或不同路径)出发,各自探索。
  • 核心作用
    避免所有人挤在同一区域,提高找到全局最优解的概率。

英文记忆笔记

  • Random k states = Initially generate k different candidates randomly.
  • Purpose → Diversify exploration and avoid local optima.
  • Example
    In TSP, start with k=3 random routes (e.g., A→B→C→D, D→C→A→B, B→A→D→C).

Key Formula
Initialization: k = random_states()


一句话理解
“随机k个”就像抽奖时多买几张不同号码的彩票——增加中奖(找到最优解)的机会! 🎟️

 


核心内容总结

根据图片内容,​局部束搜索(Local Beam Search)​ 和 ​随机束搜索(Stochastic Beam Search)​ 是两种基于并行化的启发式搜索策略,核心区别在于选择后继状态的规则。以下是详细解析:


1. 局部束搜索(Local Beam Search)​

核心机制
  1. 初始化:随机生成 ​k 个独立初始状态​(如k=3条不同的路径)。
  2. 扩展:每个状态生成 ​m 个后继状态​(如每条路径尝试3种改进方向),共生成 ​k×m 个候选状态
  3. 选择:从所有候选状态中选出 ​最优的 k 个,作为下一轮迭代的起点。
  4. 终止:重复上述步骤,直到找到目标或无法改进。
关键特点
  • 合作式搜索:k 个状态协同工作,共享候选池并筛选全局最优解。
  • 贪心策略:始终保留当前最优的 k 个状态(类似“精英选拔”)。
  • 对比 RRHC:不同于随机重启爬山法(RRHC)的多次独立搜索,束搜索通过并行协作提高效率。

示例​(以路径规划为例):

  • 初始3条路径(k=3)→ 每条生成2条新路径(m=2)→ 共6条候选 → 保留最短的3条继续。

2. 随机束搜索(Stochastic Beam Search)​

核心机制

流程与局部束搜索相同,但选择规则不同

  • 不从候选池中选最优的 k 个,而是随机抽取 k 个​(允许非最优状态保留)。
  • 随机性增加了多样性,避免过早收敛到局部最优。
关键特点
  • 探索与利用平衡:随机选择可能保留潜在优质解(类似遗传算法的“轮盘赌”策略)。
  • 适用场景:当问题空间复杂、存在多个局部最优时,随机性有助于跳出局部陷阱。

示例​(以函数优化为例):

  • 候选池中有6个解 → 随机抽取3个(可能包含次优但多样性高的解)→ 继续迭代。

3. 与随机重启爬山法(RRHC)的对比

维度局部束搜索随机重启爬山法(RRHC)​
搜索方式并行维护k个状态,协同生成候选池串行执行多次独立爬山搜索(每次随机重启)
内存效率仅需保存k个状态每次独立搜索需重新初始化,内存消耗更高
全局收敛性更易找到全局最优(多状态协作)依赖重启次数,可能重复陷入局部最优
选择策略贪心选优 或 随机抽取每次独立爬山均为贪心策略

4. 流程图解析(示例)​

根据图片中的流程:

  1. 初始 k 个状态​(如k=2)→ 每个生成 ​m 个后继​(如m=2)→ 总候选池为4个状态。
  2. 选择阶段
    • 局部束搜索:选2个最优状态(如代价最低的)。
    • 随机束搜索:随机选2个状态(可能包含次优解)。
  3. 重复扩展和选择,直到终止。

通俗比喻

  • 局部束搜索像“高考择优录取”,只收分数最高的学生。
  • 随机束搜索像“抽签录取”,保留多样性但可能漏掉尖子生。

应用场景

  1. 自然语言处理:机器翻译中生成多样化候选句子(束搜索)。
  2. 组合优化:旅行商问题(TSP)求解多组路线并择优。
  3. 机器人路径规划:并行探索多条路径,选择最短或最安全的。

通俗解释:为什么允许有k个起始点?

你的疑问非常合理!在传统路径问题(如迷宫寻路)中,确实只有一个物理起点,但局部束搜索(Local Beam Search)​ 的应用场景和设计逻辑与传统路径搜索不同。以下是分步解释:


1. 核心区别:优化问题 vs. 路径问题
  • 传统路径问题(如BFS/A*)​

    • 固定起点:例如迷宫入口,目标是找到从入口到出口的单条最短路径
    • 搜索方式:系统化遍历所有可能路径(如逐层扩展)。
  • 优化问题(如局部束搜索)​

    • 无固定起点:目标是找到全局最优解​(如最短路线、最佳参数组合等),而非固定起点到终点的路径。
    • 搜索方式:随机生成多个候选解(即“k个起始点”),并行优化。

一句话总结

局部束搜索的“k个起始点”不是物理位置,而是多个随机生成的候选解


2. 为什么需要k个起始点?

问题场景
假设你要解决旅行商问题(TSP)​,即找到访问所有城市的最短路线。

  • 传统路径搜索(如BFS)​:从某一城市出发,穷举所有路线,但计算量爆炸(城市数稍大即不可行)。
  • 局部束搜索
    1. 随机生成k条初始路线​(如k=5条随机排列的路线)。
    2. 每条路线作为“起始点”,各自尝试优化(如交换两城市顺序)。
    3. 保留优化后最好的k条路线,重复直到收敛。

优势

  • 避免局部最优:即使部分路线陷入局部最优,其他路线可能继续优化。
  • 高效探索:多路线并行,比单一路线搜索更快找到全局最优解。

3. 图中的“k个起始点”如何理解?

根据图片中的示例:

  • k个起始点 = 随机生成的k个候选解(如k=2条初始路线)。
  • 每个起始点生成m个后继 = 对每条路线进行m次改进尝试(如交换城市、反转路径等)。
  • 最终选择k个后继 = 保留改进后最好的k条路线(或随机选k条)。

类比生活场景

  • 你想找到从家到公司的最快路线,但不确定哪条路好走。
    • 传统方法:每天固定走一条路,慢慢试错。
    • 束搜索方法
      1. 雇5个朋友(k=5),每人随机选一条路出发(起始点不同)。
      2. 每个朋友尝试绕道或换小路(生成后继路径)。
      3. 每天结束后,选5条最快到达的路线,第二天继续优化。

4. 为什么图片中说“不同于随机重启爬山法(RRHC)”?

  • 随机重启爬山法(RRHC)​

    • 单线程搜索:每次随机生成一个起点,独立优化到局部最优后,重启新搜索。
    • 缺点:多次独立搜索可能重复陷入同一局部最优。
  • 局部束搜索

    • 多线程协作:k个候选解共享信息(如合并优化结果),协作寻找全局最优。
    • 优点:通过并行和协作,更高效避免局部最优。

示例对比

  • RRHC:5个人各自独立找路,互不交流,可能重复找到同一拥堵路线。
  • 束搜索:5个人每天共享最快路线,集体优化,更快找到全局最优解。

总结

概念传统路径问题(BFS/A*)​局部束搜索(优化问题)​
起点固定物理起点(如迷宫入口)多个随机生成的候选解(如随机路线)
目标单条最短路径全局最优解(如最短路线、最佳参数)
核心逻辑系统化遍历所有可能路径并行优化多个候选解

关键结论

  • 局部束搜索的“k个起始点”本质是多个随机初始解,用于解决无固定起点的全局优化问题。
  • 它的优势在于通过并行协作平衡探索(多样化尝试)​ 和 ​利用(优化当前最佳解)​

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值