《CBAM: Convolutional Block Attention Module》论文笔记

参考代码:CBAM.PyTorch

1. 概述

导读:这篇文章通过在卷积网络中加入Attention模块,使得网络的表达能力得到提升,进而提升网络的整体性能。文章的Attention模块是在卷积特征的channel于spatial两个维度上先后做Attention操作,之后得到增强之后的特征。并且这个Attention模块具有极佳的模块化性能能够很方便的集成到现有的网络中去,从而带来性能上的提升。

在文章中需要优化的特征图为 F ∈ R C ∗ H ∗ W F\in R^{C*H*W} FRCHW,经过channel上的Attention为 M c ∈ R C ∗ 1 ∗ 1 M_c\in R^{C*1*1} McRC11,spatial上的Attention操作之后得到 M s ∈ R 1 ∗ H ∗ W M_s\in R^{1*H*W} MsR1HW,其计算过程见图1所示:
在这里插入图片描述
对应的数学表达为:
F ‘ = M c ( F ) ⊗ F F^{‘}=M_c(F)\otimes F F=Mc(F)F
F ‘ ’ = M s ( F ‘ ) ⊗ F ‘ F^{‘’}=M_s(F^{‘})\otimes F^{‘} F=Ms(F)F

2. 方法设计

2.1 channel上的Attention

对于输入的特征图 F F F首先经过两个分支:channel维度的全局平均池化以及全局最大池化得到对应的特征向量 F a v g c , F m a x c ∈ R C ∗ 1 ∗ 1 F_{avg}^c,F_{max}^c\in R^{C*1*1} Favgc,FmaxcRC11,之后经过映射得到对应的Attention向量 M c ∈ R C ∗ 1 ∗ 1 M_c\in R^{C*1*1} McRC11。在这映射的过程中会经过多层感知机组成的网络和sigmoid激活函数,因而这个运算过程可以描述为:
M c ( F ) = σ ( W 1 ( W 0 ( F a v g c ) ) + W 1 ( W 0 ( F m a x c ) ) ) M_c(F)=\sigma(W_1(W_0(F_{avg}^c))+W_1(W_0(F_{max}^c))) Mc(F)=σ(W1(W0(Favgc))+W1(W0(Fmaxc)))
其对应的运算流程见下图所示:
在这里插入图片描述

2.2 spatial上的Attention

在得到channel上的Attention特征图之后结下来就是对其进行spatial上的Attention操作。文中首先对特征图在channel维度上进行池化得到特征图 F a v g s , F m a x s ∈ R C ∗ 1 ∗ 1 F_{avg}^s,F_{max}^s\in R^{C*1*1} Favgs,FmaxsRC11,再将其concat起来,最后得到特征图的维度是 M s ( F ) ∈ R H ∗ W M_s(F)\in R^{H*W} Ms(F)RHW。因而文章在spatial上的Attention其流程见下图所示:
在这里插入图片描述
其对应的数学表达式为:
M s ( F ) = σ ( C o n v 7 ∗ 7 ( [ F a v g s , F m a x s ] ) ) M_s(F)=\sigma(Conv_{7*7}([F_{avg}^s,F_{max}^s])) Ms(F)=σ(Conv77([Favgs,Fmaxs]))

3.1 实验结果

性能比较:
在这里插入图片描述
spatial和channel上排列组合对性能的影响:
在这里插入图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: CBAM是卷积块注意力模块的缩写,是一种用于交替堆叠到深度卷积神经网络(CNNs)中的模块。它包含两个子模块:通道注意力模块和空间注意力模块。通道注意力模块用来对每个通道进行加权,确定哪些通道最重要。空间注意力模块在每个通道中对所有空间位置进行加权,可以捕捉不同位置的重要性,从而更好地定位物体。 CBAM的优点在于,它能够提高CNNs的性能,减少了过度拟合的情况。CBAM结构的输入任意大小、任意通道数、任意深度,因此可以适用于各种计算机视觉任务,包括图像分类,物体检测和语义分割等。 总之,CBAM是一种具有高灵活性和高性能的卷积块注意力模块,能够极大地增强CNNs的表达能力,提高计算机视觉任务的准确性。 ### 回答2: CBAMConvolutional Block Attention Module),是一种用于图像分类的Attention模块,它主要是用于增强卷积神经网络(CNN)的特征表达能力,使得CNN能够更好地区分不同种类的图像。 CBAM结构由两部分组成,分别是CBAM-Channel和CBAM-Spatial。在CBAM-Channel中,它通过引入注意力机制,对每个通道的特征进行加权求和,并且使用全局平均池化操作,计算其重要性参数,进而对特征进行修正,从而提升模型的表达能力。CBAM-Spatial则通过空间注意力机制对图像中的区域进行注意力分配权重,进一步优化模型的性能。 CBAM在图像分类方面的性能表现非常卓越。实验证明,在对比原始ResNet和ResNeXt网络,以及加入CBAM的ResNet和ResNext网络进行图像分类时,加入CBAM的ResNet和ResNeXt网络具有更强的表达能力和更高的分类准确性,同时,它在训练过程中的收敛速度也有所提升。 总的来说,CBAM是一种非常有效的图像分类模块,利用注意力机制对CNN的特征进行增强,为图像分类任务提供了更好的性能表现。随着人工智能的迅速发展,CBAM在图像识别、物体检测等领域将具有广阔的应用前景。 ### 回答3: CBAM是卷积块注意力模块的缩写,它是一种用于图像分类和目标检测的神经网络模型。CBAM模块通过将通道和空间注意力机制组合在一起,从而有效地提高了模型的性能。 CBAM模块分为两个部分:通道注意力机制和空间注意力机制。通道注意力机制是针对图像特征中的通道信息进行关注,它可以基于每个通道的特征图来计算权重,然后对于每个通道进行信息的调整和加权。这样,在网络中的每个层次上都能更好地利用有用的通道信息,减少无用信息对网络性能的影响。 空间注意力机制是针对图像特征中的空间信息进行关注。它能够自适应地计算每个像素点的权重,然后对于每个像素点进行信息的调整和加权。这样,网络中的每个空间位置都能更好地利用有用的空间信息,提高目标检测和分类的准确率。 通过组合这两种注意力机制,CBAM模块能够区分有用和无用的特征,从而在图像分类和目标检测任务中取得更好的性能。CBAM模块通常被用在深度卷积神经网络中,例如ResNet以及MobileNet等,以提高整个网络中的特征提取能力和分类性能。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值