AIGC时代下,代码问题已经可以问GPT类的产品了,以前要去花很多时间搜索的内容都可以直接问他们了(虽然他们现在有时候还没有那么智能,也还不能创造新内容),但对于一些基本的问题,他们已经可以帮助我们解决了。对应到其他领域,一些不太要求“创新性”、“定制化”的领域的岗位也会被越来越多的Gpt类产品覆盖了。所有行业可能都会因此而发生变化,在如此“变化”的智能时代,怎样才能找到自己该走的那条路呢?有一个算法思路可能会给我们些启发:粒子群算法。
粒子群算法是一种基于群体智能的启发式优化算法,它的灵感来自于鸟群或鱼群等生物群体的群体行为,比如搜索食物或迁徙时的行为。它通过模拟个体粒子在解空间中的迭代运动来寻找“最优解”,每个粒子代表了问题的一个潜在解,并具有两个关键属性:位置(表示潜在解)和速度(决定如何从当前位置移动到下一个位置),粒子群算法通过迭代来更新每个粒子的位置和速度,使其逐渐趋近于全局最优解。让我们简单来看下它的基本步骤:
步骤:
-
初始化: 随机生成一群个体粒子,为每个粒子分配初始位置(解空间中的随机点)和速度(通常也是随机初始化);
-
评估: 计算每个粒子的适应度(目标函数值),用来衡量解的质量;
-
更新速度和位置: 根据速度和位置更新公式,更新每个粒子的速度和位置;
-
更新个体最优解: 对于每个粒子,根据当前位置的适应度值更新其个体最优解(如当前粒子的位置优于其个人历史上的最优解,则更新其个体最优解);
-
更新群体(全局)最优解: 从所有粒子的个体最优解中选择适应度最好的作为群体最优解,并更新粒子的速度和位置;
-
终止条件: 重复上述步骤,直到满足停止条件(比如,达到预设的最大迭代次数、找到足够好的解或者收敛到一定程度等)。
从以上的步骤中,我们可以看出“粒子群算法”中粒子的移动受到两个最优值的影响:个体最优解(每个粒子经历过的最优位置)和 全局最优解(整个粒子群中所有粒子经历过的最优位置)。
如果借鉴“粒子群算法”的思路,我们可以这样来整理自职业规划思路:
-
感兴趣的方向都可以尝试:粒子群算法中每个粒子代表了一个潜在解的候选点;那对应到我们的职业规划,每个候选方向也可以类比为一个粒子;
-
定期更新每个候选方向的认知和进度:粒子群算法是根据每个粒子根据自身的历史经验和群体的经验,来调整自己的速度和位置;那对应到职业规划中,我们也可以根据这个方向里卓越型人物对这个方向的认知,以及自己在实践这个方向时的经验,来更新自己对“每个候选方向”的权重,比如投入的“精力”和“物质成本”;
-
定期将所有候选方向的更新放在一起整体比较优劣势:将每个粒子的最优解与群体最优解进行比较,并更新群体最优解;那对应到职业规划中,我们可以将“每个候选方向”里的发展认知和”所有候选方向”放在一起比较优劣势,来找到最适合自己的发展的状态,从而找到适合自己的职业发展方向。
在落地以上操作时,对于单个的某个候选方向的操作,我们可以参考“WOOP方法”,它提倡设定目标时不仅需要明确愿望和期望的结果,还需要考虑可能遇到的障碍以及应对这些障碍的计划。这种对比过程有助于更加实际地设定目标,并提高实现目标的成功率。它的步骤概括如下:
步骤:
-
愿望(Wish): 确定一个具体、明确的愿望或候选方向。这个候选方向,应该是自己感兴趣的,愿意为此投入精力去精进技能和思维的,而且要可执行,并且你会因为做这件事,而产生满足感或成就感;
-
结果(Outcome):想象并明确描述实现这个愿望或候选方向后的理想结果或场景。这个结果需要具体的、让你满意并能够激发你的内在动力的(想象是心理学上常用的方法,可以让人由美好的结果“倒推”当下应该怎么做)
-
障碍(Obstacle): 有了想象的美好结果后,接下来想象可能阻碍你实现目标的障碍或困难。这些障碍或困难可以是内在的(如你的习惯、情绪管理的问题等等)或外在的(如时间精力有限、缺少必要的资源等);
-
计划(Plan): 针对这些障碍,找到可以执行的解决方案,并制定相应的计划来实践。这里的计划可以是具体日程表,改变环境来远离刺激物或者刻意性地尝试改变思维模式等。
举个例子:
小张是一名前端工程师,工作了有5年了,但对于自己未来的职业规划很迷茫,时不时地就有倦怠感出来,他不知道自己当前做的事情是不是自己想要做的,没什么热情,也不知道十年后还能做什么其他的工作,这时候他可以尝试这样规划:
1、找到自己感兴趣的领域有哪些,比如写作,新的AI技术,又或者是攀岩,游泳,这里感兴趣的领域可以不用太过局限,因为就算某些领域不会成为职业的发展方向,但也会让你从中学到很多其他东西,对自己的思维是一种很好的开阔。
2、针对每个感兴趣的领域,想象如果你做到了某个程度,你是否还会非常有热情继续做下去,长久的做下去。如果答案“是”,你就可以开始“倒推”要实现这个想象,你会遇到哪些问题,比如你的时间可能不够,或者你不知道怎么入门等等,根据这些障碍,去查找解决方案,时间不够可以看怎么协调或减少些不必要的事情从而挤出时间;不知道怎么入门,可以加入社群,买书等。找到解决方案后,制定计划开始尝试起来(什么事,只有试过才知道是啥感觉,适不适合自己)。
3、定期更新你对每个领域的认知,比如你尝试了写作,发现明明有很多话讲,却写不出任何东西,又或者是写来写去都是类似的内容,这时就要针对性的找写作的书籍或者看写作牛人们是如何度过这种初期阶段的。接着,继续练习,看自己对这个领域的感兴趣程度是否有变化。如果你发现你对这个领域也不是那么有兴趣,那你就可以调低这个权重(只能当兴趣爱好,不能当职业);如果你发现你越来越有兴趣,那就加大权重(多分配点时间和物质成本去实践、尝试它)。
4、整合所有候选方向的进度,更新整体寻找方向的计划:定期将自己所有感兴趣领域的进度放在一起,根据自己感兴趣的程度,要达到理想状态所需的时间和成本,以及无法达到理想状态的风险度等综合评估当下最需要加速的领域是什么(好让自己离最终目标更接近)。这里其实是没有标准答案的,每个人的追求不同,你认为好的方向,但是别人没兴趣,那就不适合别人。有人认为技能的快速进步很重要,有人认为生活的平衡更重要,这个看自己的追求,适合自己的就是最好的答案!
总体来说,职业的迷茫感是大多数人都会遇到的正常情况,关键还是要看“内在动机”在哪,能调动起自己的内在动机,意义感就出来了,迷茫自然就消失了。找到内在动机的方法,无非就是总结方法(不管是从别人那里看到的还是自己实践总结的),然后实践它、更新迭代它,直到达到稳定的适配状态(跟算法模型的思路还是很像的)。
有一句话叫“太阳底下无新事”,无论外在环境如何变化,人类要面对关于“自己”的问题都一样,借由我们平时接触事物的思维来迭代自己的思维吧,没准有点用呢!