✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
在现代无线通信系统中,高效且可靠的数据传输是至关重要的。为了在有限的带宽内传输尽可能多的信息,各种复杂的调制技术应运而生。其中,正交幅度调制 (Quadrature Amplitude Modulation, QAM) 是一种广泛应用的高阶调制方案。通过结合幅度和相位的变化,QAM 能够在一个符号周期内携带更多的比特信息,从而显著提高了频谱效率。16-QAM,作为一种中等阶数的 QAM 调制方式,在许多通信标准中都有应用,例如 Wi-Fi、LTE 等。理解 16-QAM 调制的本质,特别是其波形和星座图的特性,对于深入理解其工作原理以及在实际通信链路中的信号表现至关重要。本文将深入探讨 16-QAM 调制的波形特性、星座图结构,并结合消息信号、传输信号和接收信号的波形,全面阐述 16-QAM 调制在整个通信过程中的信号变化。
16-QAM 调制原理回顾
在展开对波形和星座图的讨论之前,有必要简要回顾一下 16-QAM 的调制原理。16-QAM 是一种二维调制技术,它通过调整载波的幅度和相位来表示不同的数字比特组合。具体而言,16-QAM 每次调制 4 个比特(因为 24=1624=16),这 4 个比特对应于 16 种不同的符号。每一个符号都对应于一个特定的复数值,该复数值的实部和虚部分别决定了两个正交载波(同相分量 I 和正交分量 Q)的幅度。
16-QAM 星座图
星座图是理解 QAM 调制的最直观的工具之一。它是一个二维平面,横轴通常表示同相分量 (I),纵轴表示正交分量 (Q)。星座图上的每一个点代表一个可能的符号,其坐标 (Ii,Qi)(Ii,Qi) 对应于该符号的复数值 SiSi。在 16-QAM 中,由于有 16 个不同的符号,因此星座图上有 16 个点。
16-QAM 的星座图通常呈现出一种对称的矩形或正方形结构。以矩形星座图为例,其 16 个点可以分为 4 个象限,每个象限有 4 个点。这些点的 I 和 Q 坐标通常取自有限的离散值集合。
星座图不仅展示了可能的符号点,也直观地反映了符号之间的“距离”。在理想的无噪声信道中,接收到的信号对应于传输的星座点。在存在噪声的情况下,接收到的信号会在星座点的周围形成一个“模糊区域”。解调器通过判断接收到的信号点最接近哪个理想的星座点来恢复传输的符号。因此,星座点之间的距离越大,在一定噪声水平下,判决正确的概率就越高,误码率就越低。16-QAM 的星座图相较于 4-QAM (QPSK) 等低阶调制方式,星座点更加密集,这意味着在相同的平均发射功率下,16-QAM 更容易受到噪声的影响,但同时也能够传输更多的信息。
星座图上的每一个点都对应一个特定的幅度和相位。从原点到星座点的向量长度代表了该符号的幅度,该向量与 I 轴的夹角代表了该符号的相位。通过观察星座图,我们可以清晰地看到,16-QAM 的符号具有多种不同的幅度和相位组合,这正是其高阶调制能力的体现。
消息信号的波形
消息信号(或称基带信号)是原始数字信息经过编码和映射后的信号。在 16-QAM 调制中,消息信号通常表现为一系列离散的复数值符号,每个符号对应于 4 个比特。如果我们考虑消息信号的实部和虚部,它们可以分别看作是两个独立的脉冲序列。例如,对于一个消息符号 Si=Ii+jQiSi=Ii+jQi,其在时域上可以表示为脉冲函数乘以相应的复数值。在理想情况下,每个符号持续一个符号周期 TsTs。
然而,实际中的消息信号在调制前通常会先进行脉冲整形。脉冲整形的主要目的是限制信号带宽,以符合信道特性并减小符号间干扰。常用的脉冲整形函数包括矩形脉冲、升余弦滚降脉冲等。如果采用矩形脉冲整形,消息信号的波形在每个符号周期内是恒定的幅度值,然后瞬时跳变到下一个符号的幅度值。如果采用升余弦滚降脉冲,消息信号的波形将更加平滑,在符号周期的边界处呈现出缓慢的衰减。
因此,消息信号的波形是离散符号序列与脉冲整形函数卷积的结果。它反映了原始数字信息经过编码和符号映射后的基带信号特性,是后续进行载波调制的“基石”。
传输信号的波形
传输信号是将消息信号调制到高频载波上的信号。在 16-QAM 调制中,传输信号是消息信号的实部调制到同相载波上,消息信号的虚部调制到正交载波上,然后叠加形成的。
与低阶调制(如 BPSK 或 QPSK)相比,16-QAM 传输信号的包络不是恒定的。这是因为 16-QAM 的星座点距离原点的距离是不同的,即符号的幅度是变化的。这种非恒定的包络特性使得 16-QAM 信号对非线性放大器更加敏感,可能导致信号失真和频谱展宽。然而,这也是其能够携带更多信息所付出的代价。
在理想情况下,传输信号的带宽受到脉冲整形函数 p(t) 的限制。通过选择合适的脉冲整形函数,可以有效地控制传输信号的频谱,减少对相邻信道的干扰。传输信号的波形直观地展示了经过调制后的信号如何在物理信道中传播,其形态直接影响着信号的抗干扰能力和传输效率。
接收信号的波形
接收信号是传输信号在经过信道传播后到达接收端的信号。
从波形上看,接收信号的波形通常是传输信号的波形经过模糊和叠加噪声后的结果。如果信道存在衰减,接收信号的幅度会减小。如果信道存在多径效应,接收信号会表现出拖尾和畸变。噪声的叠加使得接收信号的波形不再是光滑的,而是充满了随机的波动。
在接收端,解调器的任务是从接收信号中恢复出原始的消息信号。这通常通过与本地生成的载波进行相干解调来完成。相干解调涉及到将接收信号乘以本地生成的同相载波和正交载波,然后进行积分。理想情况下,如果信道是无失真且无噪声的,解调后的信号应该能够恢复出原始的基带消息信号(经过滤波后的版本)。
然而,由于信道失真和噪声的存在,解调后的信号点在星座图上会偏离理想的星座点,形成一个“模糊区域”。解调器需要根据这些模糊的信号点来判决最可能的原始符号。接收信号波形的质量直接影响到解调的性能。信道失真越严重,噪声水平越高,接收信号的波形与理想传输信号的波形差异越大,解调出错的概率也就越高。
波形与星座图的关联
理解 16-QAM 的波形和星座图之间的关联至关重要。传输信号的波形是由每个符号对应的复数值(星座点)经过脉冲整形后调制到载波上形成的。
在接收端,解调过程本质上是将接收到的高频信号下变频到基带,并对每个符号周期内的波形进行采样或积分,从而得到一个复数值。这个复数值在星座图上表示为一个接收到的信号点。在理想情况下,如果信道是无噪声无失真的,接收到的信号点会精确地落在传输符号对应的星座点上。而在实际信道中,由于噪声和失真,接收到的信号点会偏离理想的星座点。
因此,传输信号的波形是星座点在时域上的“展开”,而接收到的信号点在星座图上的分布则反映了信道对传输信号波形的影响程度。通过分析接收信号的波形,我们可以间接了解信道的特性和噪声水平;通过观察星座图上接收信号点的分布,我们可以更直观地评估通信链路的性能和误码率。
结论
16-QAM 调制是一种高效的高阶调制技术,通过结合幅度和相位的变化来传输信息。其核心在于将数字比特映射到具有不同幅度和相位的复数符号,这些符号在二维星座图上表示为离散的点。消息信号是经过编码和映射后的基带信号,其波形受到脉冲整形的影响。传输信号是将消息信号调制到高频载波上的信号,其包络和相位随着消息信号的符号变化而变化,呈现出非恒定的特性。接收信号是传输信号经过信道衰减、失真和噪声叠加后的结果,其波形通常是传输信号波形的模糊和噪声污染版本。
理解 16-QAM 调制的波形和星座图,以及它们在消息信号、传输信号和接收信号中的表现,对于分析通信链路的性能、设计解调器以及进行故障排除具有重要的指导意义。星座图直观地展示了符号的分布和抗噪声能力,而波形则反映了信号在时域上的实际形态及其受信道影响的情况。通过综合分析波形和星座图,我们可以更全面地把握 16-QAM 调制的工作原理及其在实际通信系统中的应用特性。随着无线通信技术的不断发展,对包括 16-QAM 在内的高阶调制技术的深入理解,将有助于推动更高效、更可靠的通信系统的发展。
⛳️ 运行结果
🔗 参考文献
[1] 舒畅,王晨雪,高勇.MAPSK和QAM通信信号的调制识别[J].通信技术, 2012(12):41-44+51.DOI:10.3969/j.issn.1002-0802.2012.12.012.
[2] 王婷婷,龚晓峰.基于星座图的PSK、QAM信号联合识别算法应用[J].计算机应用研究, 2015, 32(7):3.DOI:10.3969/j.issn.1001-3695.2015.07.047.
[3] 王希维.基于星座图聚类分析的QAM信号调制识别算法及其DSP实现[J].电子元器件应用, 2009, 11(6):3.DOI:CNKI:SUN:YQJY.0.2009-06-010.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇