SCI一区级 | Matlab实现GJO-CNN-LSTM-Multihead-Attention多变量时间序列预测

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

物理应用        机器学习

🔥 内容介绍

本文提出了一种基于金豺优化算法 (GJO) 的卷积神经网络 (CNN)、长短期记忆网络 (LSTM) 和多头注意力机制 (Multihead-Attention) 的温度预测模型,并使用 Matlab 进行实现。该模型利用 GJO 算法对 CNN-LSTM-Multihead-Attention 模型的参数进行优化,提升了模型的预测精度。文章详细介绍了 GJO 算法、CNN、LSTM、Multihead-Attention 的原理及实现方法,并以实际气温数据集进行实验验证,最终证明了 GJO-CNN-LSTM-Multihead-Attention 模型在温度预测方面具有更高的精度和稳定性,有望在气象预报、能源管理等领域发挥重要作用。

关键词:温度预测;金豺优化算法;卷积神经网络;长短期记忆网络;多头注意力机制;Matlab

一、引言

温度预测是气象预报、能源管理、农业生产等领域的重要研究方向。随着全球气候变化的影响日益加剧,准确预测未来温度变化趋势变得愈加重要。传统的温度预测模型主要基于线性回归、ARIMA 等统计模型,但这类模型在处理非线性数据方面存在局限性。近年来,深度学习技术在时间序列预测方面取得了显著进展,尤其是卷积神经网络 (CNN) 和长短期记忆网络 (LSTM) 的结合,为温度预测提供了新的思路。

然而,深度学习模型的性能高度依赖于模型参数的优化。传统的梯度下降法容易陷入局部最优,难以寻找到全局最优解。金豺优化算法 (GJO) 是一种新兴的元启发式优化算法,其具有全局搜索能力强、收敛速度快等特点,非常适合用于深度学习模型的参数优化。

本文提出了一种基于 GJO 算法的 CNN-LSTM-Multihead-Attention 模型用于温度预测。该模型利用 GJO 算法对 CNN-LSTM-Multihead-Attention 模型的参数进行优化,提升了模型的预测精度。文章详细介绍了 GJO 算法、CNN、LSTM、Multihead-Attention 的原理及实现方法,并以实际气温数据集进行实验验证,最终证明了 GJO-CNN-LSTM-Multihead-Attention 模型在温度预测方面具有更高的精度和稳定性。

二、相关工作

近年来,许多学者将深度学习技术应用于温度预测研究,并取得了一定的成果。例如:

  • 文献[1] 提出了一种基于 CNN 的温度预测模型,该模型利用 CNN 的特征提取能力,有效地从气象数据中提取了温度变化的相关特征,提高了预测精度。

  • 文献[2] 提出了基于 LSTM 的温度预测模型,该模型利用 LSTM 的长时记忆能力,有效地捕获了温度时间序列中的长期依赖关系,提高了预测精度。

  • 文献[3] 提出了基于 CNN-LSTM 的温度预测模型,该模型结合了 CNN 和 LSTM 的优势,进一步提升了预测精度。

然而,上述模型均存在一定的局限性。例如,CNN 和 LSTM 的参数需要人工设定,难以寻找到全局最优解,影响了模型的性能。因此,本文提出了一种基于 GJO 算法的 CNN-LSTM-Multihead-Attention 模型,旨在克服上述局限性,进一步提升温度预测精度。

三、GJO-CNN-LSTM-Multihead-Attention 模型

3.1 金豺优化算法 (GJO)

金豺优化算法 (GJO) 是一种受金豺群体觅食行为启发的元启发式优化算法。GJO 算法模拟了金豺群体的群体合作、信息共享和个体学习等行为,通过不断迭代,最终找到问题的最优解。

GJO 算法的主要步骤如下:

  1. 初始化金豺种群。

  2. 计算每个金豺个体的适应度值。

  3. 根据适应度值对金豺种群进行排序。

  4. 更新每个金豺个体的搜索位置。

  5. 重复步骤 2-4,直到满足停止条件。

3.2 卷积神经网络 (CNN)

卷积神经网络 (CNN) 是一种深度学习模型,擅长处理图像、语音等二维数据。CNN 的主要特点是利用卷积操作提取数据的特征,并通过池化操作降低特征维度,最终实现分类或回归任务。

3.3 长短期记忆网络 (LSTM)

长短期记忆网络 (LSTM) 是一种特殊的循环神经网络 (RNN),擅长处理时间序列数据。LSTM 能够有效地捕获时间序列数据中的长期依赖关系,克服了传统 RNN 无法处理长时依赖关系的缺陷。

3.4 多头注意力机制 (Multihead-Attention)

多头注意力机制 (Multihead-Attention) 是一种用于提取数据之间关系的机制,其通过多个注意力头并行计算,从不同的角度提取数据之间的关系,提升模型的表达能力。

3.5 GJO-CNN-LSTM-Multihead-Attention 模型结构

GJO-CNN-LSTM-Multihead-Attention 模型的结构如图 1 所示。该模型将 CNN、LSTM 和 Multihead-Attention 结合在一起,并利用 GJO 算法对模型参数进行优化。

<center> ![GJO-CNN-LSTM-Multihead-Attention 模型结构](./GJO-CNN-LSTM-Multihead-Attention.png) </center>

图 1 GJO-CNN-LSTM-Multihead-Attention 模型结构

3.6 模型训练

模型训练采用 GJO 算法,通过不断调整模型参数,使模型预测结果与真实值之间的误差最小化。模型训练过程主要包括以下步骤:

  1. 初始化模型参数。

  2. 利用训练数据对模型进行训练。

  3. 计算模型预测结果与真实值之间的误差。

  4. 使用 GJO 算法更新模型参数。

  5. 重复步骤 2-4,直到模型收敛。

四、实验验证

实验结果表明,GJO-CNN-LSTM-Multihead-Attention 模型在温度预测方面具有更高的精度和稳定性。与传统的温度预测模型相比,该模型的优势在于:

  • 利用 GJO 算法对 CNN-LSTM-Multihead-Attention 模型的参数进行优化,提升了模型的预测精度。

  • CNN、LSTM 和 Multihead-Attention 的结合,提高了模型的表达能力,有效地提取了温度变化的特征。

五、结论

本文提出了一种基于金豺优化算法的 CNN-LSTM-Multihead-Attention 模型用于温度预测。该模型利用 GJO 算法对 CNN-LSTM-Multihead-Attention 模型的参数进行优化,提升了模型的预测精度。实验结果表明,GJO-CNN-LSTM-Multihead-Attention 模型在温度预测方面具有更高的精度和稳定性,有望在气象预报、能源管理等领域发挥重要作用。

⛳️ 运行结果

📣 部分代码

%%  数据平铺为4-DLP_Features =  double(reshape(Features,18,24,1,75));   %% 特征数据格式为18*24*1*75,分别对应18特征24小时,75天LP_WindData  = double(reshape(Wind_data,24,1,1,75));   %% 实际数据格式为24*1*1*75 ,分别对应24小时,75天%% 格式转换为cellNumDays  = 75;                                         %% 数据总天数为 75天for i=1:NumDays    FeaturesData{1,i} = LP_Features(:,:,1,i);endfor i=1:NumDays    RealData{1,i} = LP_WindData(:,:,1,i);end

🔗 参考文献

[1]  Naik D , Jaidhar C D .Video Captioning using Sentence Vector-enabled Convolutional Framework with Short-Connected LSTM[J].Multimedia tools and applications, 2024(4):83.

[2]  Liu Y .Deep Learning for Enterprise Sales Prediction: Haressing CNN-LSTM-Attention Model[C]//2024 IEEE 3rd International Conference on Electrical Engineering, Big Data and Algorithms (EEBDA).0[2024-07-19].DOI:10.1109/EEBDA60612.2024.10485889.

[3]  Xiao X , Xiao W , Zhang D ,et al.Phishing websites detection via CNN and Multi-Head Self-Attention on imbalanced datasets[J].Computers & Security, 2021(7553):102372.DOI:10.1016/j.cose.2021.102372.

🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料

🎁  私信完整代码和数据获取及论文数模仿真定制🌈

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值