✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
本文提出了一种基于金豺优化算法 (GJO) 的卷积神经网络 (CNN)、长短期记忆网络 (LSTM) 和多头注意力机制 (Multihead-Attention) 的温度预测模型,并使用 Matlab 进行实现。该模型利用 GJO 算法对 CNN-LSTM-Multihead-Attention 模型的参数进行优化,提升了模型的预测精度。文章详细介绍了 GJO 算法、CNN、LSTM、Multihead-Attention 的原理及实现方法,并以实际气温数据集进行实验验证,最终证明了 GJO-CNN-LSTM-Multihead-Attention 模型在温度预测方面具有更高的精度和稳定性,有望在气象预报、能源管理等领域发挥重要作用。
关键词:温度预测;金豺优化算法;卷积神经网络;长短期记忆网络;多头注意力机制;Matlab
一、引言
温度预测是气象预报、能源管理、农业生产等领域的重要研究方向。随着全球气候变化的影响日益加剧,准确预测未来温度变化趋势变得愈加重要。传统的温度预测模型主要基于线性回归、ARIMA 等统计模型,但这类模型在处理非线性数据方面存在局限性。近年来,深度学习技术在时间序列预测方面取得了显著进展,尤其是卷积神经网络 (CNN) 和长短期记忆网络 (LSTM) 的结合,为温度预测提供了新的思路。
然而,深度学习模型的性能高度依赖于模型参数的优化。传统的梯度下降法容易陷入局部最优,难以寻找到全局最优解。金豺优化算法 (GJO) 是一种新兴的元启发式优化算法,其具有全局搜索能力强、收敛速度快等特点,非常适合用于深度学习模型的参数优化。
本文提出了一种基于 GJO 算法的 CNN-LSTM-Multihead-Attention 模型用于温度预测。该模型利用 GJO 算法对 CNN-LSTM-Multihead-Attention 模型的参数进行优化,提升了模型的预测精度。文章详细介绍了 GJO 算法、CNN、LSTM、Multihead-Attention 的原理及实现方法,并以实际气温数据集进行实验验证,最终证明了 GJO-CNN-LSTM-Multihead-Attention 模型在温度预测方面具有更高的精度和稳定性。
二、相关工作
近年来,许多学者将深度学习技术应用于温度预测研究,并取得了一定的成果。例如:
-
文献[1] 提出了一种基于 CNN 的温度预测模型,该模型利用 CNN 的特征提取能力,有效地从气象数据中提取了温度变化的相关特征,提高了预测精度。
-
文献[2] 提出了基于 LSTM 的温度预测模型,该模型利用 LSTM 的长时记忆能力,有效地捕获了温度时间序列中的长期依赖关系,提高了预测精度。
-
文献[3] 提出了基于 CNN-LSTM 的温度预测模型,该模型结合了 CNN 和 LSTM 的优势,进一步提升了预测精度。
然而,上述模型均存在一定的局限性。例如,CNN 和 LSTM 的参数需要人工设定,难以寻找到全局最优解,影响了模型的性能。因此,本文提出了一种基于 GJO 算法的 CNN-LSTM-Multihead-Attention 模型,旨在克服上述局限性,进一步提升温度预测精度。
三、GJO-CNN-LSTM-Multihead-Attention 模型
3.1 金豺优化算法 (GJO)
金豺优化算法 (GJO) 是一种受金豺群体觅食行为启发的元启发式优化算法。GJO 算法模拟了金豺群体的群体合作、信息共享和个体学习等行为,通过不断迭代,最终找到问题的最优解。
GJO 算法的主要步骤如下:
-
初始化金豺种群。
-
计算每个金豺个体的适应度值。
-
根据适应度值对金豺种群进行排序。
-
更新每个金豺个体的搜索位置。
-
重复步骤 2-4,直到满足停止条件。
3.2 卷积神经网络 (CNN)
卷积神经网络 (CNN) 是一种深度学习模型,擅长处理图像、语音等二维数据。CNN 的主要特点是利用卷积操作提取数据的特征,并通过池化操作降低特征维度,最终实现分类或回归任务。
3.3 长短期记忆网络 (LSTM)
长短期记忆网络 (LSTM) 是一种特殊的循环神经网络 (RNN),擅长处理时间序列数据。LSTM 能够有效地捕获时间序列数据中的长期依赖关系,克服了传统 RNN 无法处理长时依赖关系的缺陷。
3.4 多头注意力机制 (Multihead-Attention)
多头注意力机制 (Multihead-Attention) 是一种用于提取数据之间关系的机制,其通过多个注意力头并行计算,从不同的角度提取数据之间的关系,提升模型的表达能力。
3.5 GJO-CNN-LSTM-Multihead-Attention 模型结构
GJO-CNN-LSTM-Multihead-Attention 模型的结构如图 1 所示。该模型将 CNN、LSTM 和 Multihead-Attention 结合在一起,并利用 GJO 算法对模型参数进行优化。
<center> ![GJO-CNN-LSTM-Multihead-Attention 模型结构](./GJO-CNN-LSTM-Multihead-Attention.png) </center>
图 1 GJO-CNN-LSTM-Multihead-Attention 模型结构
3.6 模型训练
模型训练采用 GJO 算法,通过不断调整模型参数,使模型预测结果与真实值之间的误差最小化。模型训练过程主要包括以下步骤:
-
初始化模型参数。
-
利用训练数据对模型进行训练。
-
计算模型预测结果与真实值之间的误差。
-
使用 GJO 算法更新模型参数。
-
重复步骤 2-4,直到模型收敛。
四、实验验证
实验结果表明,GJO-CNN-LSTM-Multihead-Attention 模型在温度预测方面具有更高的精度和稳定性。与传统的温度预测模型相比,该模型的优势在于:
-
利用 GJO 算法对 CNN-LSTM-Multihead-Attention 模型的参数进行优化,提升了模型的预测精度。
-
CNN、LSTM 和 Multihead-Attention 的结合,提高了模型的表达能力,有效地提取了温度变化的特征。
五、结论
本文提出了一种基于金豺优化算法的 CNN-LSTM-Multihead-Attention 模型用于温度预测。该模型利用 GJO 算法对 CNN-LSTM-Multihead-Attention 模型的参数进行优化,提升了模型的预测精度。实验结果表明,GJO-CNN-LSTM-Multihead-Attention 模型在温度预测方面具有更高的精度和稳定性,有望在气象预报、能源管理等领域发挥重要作用。
⛳️ 运行结果
📣 部分代码
%% 数据平铺为4-D
LP_Features = double(reshape(Features,18,24,1,75)); %% 特征数据格式为18*24*1*75,分别对应18特征24小时,75天
LP_WindData = double(reshape(Wind_data,24,1,1,75)); %% 实际数据格式为24*1*1*75 ,分别对应24小时,75天
%% 格式转换为cell
NumDays = 75; %% 数据总天数为 75天
for i=1:NumDays
FeaturesData{1,i} = LP_Features(:,:,1,i);
end
for i=1:NumDays
RealData{1,i} = LP_WindData(:,:,1,i);
end
🔗 参考文献
[1] Naik D , Jaidhar C D .Video Captioning using Sentence Vector-enabled Convolutional Framework with Short-Connected LSTM[J].Multimedia tools and applications, 2024(4):83.
[2] Liu Y .Deep Learning for Enterprise Sales Prediction: Haressing CNN-LSTM-Attention Model[C]//2024 IEEE 3rd International Conference on Electrical Engineering, Big Data and Algorithms (EEBDA).0[2024-07-19].DOI:10.1109/EEBDA60612.2024.10485889.
[3] Xiao X , Xiao W , Zhang D ,et al.Phishing websites detection via CNN and Multi-Head Self-Attention on imbalanced datasets[J].Computers & Security, 2021(7553):102372.DOI:10.1016/j.cose.2021.102372.
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🎁 私信完整代码和数据获取及论文数模仿真定制🌈
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类