【语音去噪】基于量子自适应变换QAB算法实现语音去噪附matlab代码

1 简介

Decomposition of digital signals and images into other basis or dictionaries than time or space domains is a very common approach in signal and image processing and analysis. Such a decomposition is commonly obtained using fixed transforms (e.g., Fourier or wavelet) or dictionaries learned from example databases or from the signal or image itself. In this work, we investigate in detail a new approach of constructing such a signal or image-dependent bases inspired by quantum mechanics tools, i.e., by considering the signal or image as a potential in the discretized Schroedinger equation. To illustrate the potential of the proposed decomposition, denoising results are reported in the case of Gaussian, Poisson, and speckle noise and compared to the state of the art algorithms based on wavelet shrinkage, total variation regularization or patch-wise sparse coding in learned dictionaries, non-local means image denoising, and graph signal processing.

2 部分代码

% Sample code of the paper:% This script shows an example of calling our denoising algorithm % for signal using Quantum adaptative basis (QAB)function [psi,E] = f_ondes1D(signal,poids)% %the Hamiltonian associates with the signal and the associated eigenvalues% DataN = size(signal,2); % creat space to store datapsi = zeros(N,N); %eigenvectorsE = zeros(N,1);   %eigenvalues        % Construction of Hamiltonian matrice Hterme_hsm = ones(1,N) * poids;H = diag(signal,0) + diag(terme_hsm,0)*2 ...    - diag(terme_hsm(1:N-1),-1) - diag(terme_hsm(1:N-1),1);H(1,N) = -poids;H(N,1) = -poids;    % Calculation of eigenvalues and eigenvectors[vectP,valP] = eig(H);valP = diag(valP);vp_min = min(valP);vp_max = max(valP);    for g = 1:N  % Each iteration finds the "following" eigenvector  %(sorts the vectors in ascending order of the associated eigenvalues)              [valP_assoc,i_psi] = min(valP);    psi(:,g) = vectP(:,i_psi);  E(g) = valP(i_psi);  valP = [valP(1:(i_psi - 1)) ; valP((i_psi + 1):(N - g + 1))];  vectP = [vectP(:,1:(i_psi - 1)) vectP(:,(i_psi + 1):(N - g + 1))];        endend

3 仿真结果

4 参考文献

[1] Dutta S ,  Basarab A ,  Georgeot B , et al. Quantum Mechanics-Based Signal and Image Representation: Application to Denoising[J].  2021.

博主简介:擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,相关matlab代码问题可私信交流。

部分理论引用网络文献,若有侵权联系博主删除。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值