基于人工蜂群算法的RSSD双重参数优化附matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机 

⛄ 内容介绍

RSSD 方法将信号中不同成分振荡程度的差异性作为分解依据,通过可调品质因子小波变换(Tunable Q-factor wavelettransformTQWT)分别建立原始信号 的高、低品质因子小波字典S1和S2再基于形态分量分析方法(Morphological component analysisMCA)假定信号可表示为信号x1, x2与残余分量之和:

⛄ 部分代码

function [T MKurt f y T_best MKurt_best f_best y_best] = momeda_spectrum(x,filterSize,window,range,plotMode)

    % MULTIPOINT OPTIMAL MINUMUM ENTROPY DECONVOLUTION ADJUSTED

    %       code by Geoff McDonald (glmcdona@gmail.com), 2015

    %       Used in my research with reference to an unpublished paper.

    %

    % momeda_spectrum(x,filterSize,window,range,plotMode)

    %  Multipoint Optimal Minimum Entropy Deconvolution (MOMEDA) computation algorithm. This proposed

    %  method solves the optmial solution for deconvolving a periodic train of impulses from a signal.

    %  It is best-suited in application to rotating machine faults from vibration signals, to deconvolve

    %  the impulse-like vibration associated with many gear and bear faults. This function generates

    %  a spectrum of how-well impulse-trains can be deconvolved at each period of separation between

    %  the impulses. Generally, this spectrum will product peaks at periods corresponding to critial

    %  frequencies, and the resulting magnitudes may be tracked to monitor machine component health.

    %

    %  This method is derived in the Algorithm Reference section.

    %

    % Inputs:

    %    x: 

    %       Signal to generate the MOMEDA spectrum on. Generally this should be around the range

    %       of 1000 to 10,000 samples covering at least 5 rotations of the elements in the machine.

    % 

    %    filterSize:

    %       This is the length of the finite inpulse filter filter to 

    %       design. This must be larger than max(range). Generally a number

    %       on the order of 500 or 1000 is good, but may depend on the

    %       dataset length.

    % 

    %    window:

    %       This is the window that be convolved with the impulse train target. Generally, a

    %       rectangular window works well, eg [1 1 1 1 1]. Has to be shorter in length

    %       than min(range).

    % 

    %    range:

    %       This is the periods to test as the spectrum x-axis. It should be a decimal range, like:

    %           range = 5:0.1:300;

    % 

    %    plotMode:

    %       If this value is > 0, plots will be generated of the iterative

    %       performance and of the resulting signal.

    %

    % Outputs:

    %    T:

    %       The x-axis of the resulting spectrum, representing the period in samples.

    %

    %    MKurt:

    %       The y-axis of the spectrum, representing the Multipoint Kurtosis of the Deconvolution

    %       result at the corresponding period in T.

    %

    %    f:

    %       Optimal filters designed for each period in T.

    %

    %    y:

    %       Outputs for each filter designe at each period in T.

    % 

    %    T_best:

    %       Period T corresponding to the highest MKurt.

    %

    %    MKurt_best:

    %       max(MKurt)

    %

    %    f_best

    %       Filter corresponding to maximum MKurt in the range provided.

    %

    %    y_best

    %       Most-faulty output signal, max(MKurt).

    %

    % Example:

    %

    % % Simple vibration fault model

    % close all

    % n = 0:9999;

    % h = [-0.05 0.1 -0.4 -0.8 1 -0.8 -0.4 0.1 -0.05];

    % faultn = 0.05*(mod(n,50)==0);

    % fault = filter(h,1,faultn);

    % noise = wgn(1,length(n),-25);

    % x = sin(2*pi*n/30) + 0.2*sin(2*pi*n/60) + 0.1*sin(2*pi*n/15) + fault;

    % xn = x + noise;

    % 

    % % No window. A 5-sample recangular window would be ones(5,1)

    % window = ones(1,1);

    % 

    % % 1000-sample FIR filters will be designed

    % L = 1000;

    % 

    % % Plot a spectrum from a period of 10 to 300 (actual fault is at 50)

    % range = [10:0.1:300];

    % 

    % % Plot the spectrum

    % [T MKurt f y T_best MKurt_best f_best y_best] = momeda_spectrum(xn,L,window,range,1);

    % 

    % % Now lets extract the fault signal, assuming we know it has a period between 45 and 55

    % window = ones(1,1); % this is no window

    % range = [45:0.1:55];

    % [T MKurt f y T_best MKurt_best f_best y_best] = momeda_spectrum(xn,L,window,range,0);

    % 

    % % Plot the resulting fault signal

    % figure;

    % plot( y_best(1:1000) );

    % title(strcat(['Extracted fault signal (period=', num2str(T_best), ')']))

    %     

    

    % Assign default values for inputs

    if( isempty(filterSize) )

        filterSize = 300;

    end

    if( isempty(plotMode) )

        plotMode = 0;

    end

    if( isempty(window) )

        window = ones(1,1);

    end

    if( isempty(range) )

        range = [5:0.05:300];

    end

    

    if( sum( size(x) > 1 ) > 1 )

        error('MOMEDA:InvalidInput', 'Input signal x must be 1d.')

    elseif(  sum(size(plotMode) > 1) ~= 0 )

        error('MOMEDA:InvalidInput', 'Input argument plotMode must be a scalar.')

    elseif( sum(size(filterSize) > 1) ~= 0 || filterSize <= 0 || mod(filterSize, 1) ~= 0 )

        error('MOMEDA:InvalidInput', 'Input argument filterSize must be a positive integer scalar.')

    elseif( sum(size(window) > 1) > 1 )

        error('MOMEDA:InvalidInput', 'Input argument window must be 1d.')

    elseif( min(range) <= length(window) )

        error('MOMEDA:InvalidInput', 'Range starting point must be larger than the length of the window.')

    elseif( filterSize >= length(x) )

        error('MOMEDA:InvalidInput', 'Input argument filterSize must be smaller than the length of input signal x.')

    end

    

    L = filterSize;

    x = x(:); % A column vector

    

    %%% Calculte X0 matrix

    N = length(x);

    X0 = zeros(L,N);

    

    for( l =1:L )

        if( l == 1 )

            X0(l,1:N) = x(1:N);

        else

            X0(l,2:end) = X0(l-1, 1:end-1);

        end

    end

    

                        % "valid" region only

    X0 = X0(:,L:N-1);   % y = f*x where only valid x is used

                        % y = Xm0'*x to get valid output signal

    

    autocorr = X0*X0';

    autocorr_inv = pinv(autocorr);

    

    % Built the array of targets impulse train vectors separated the by periods

    T = zeros(length(range),1);

    i = 1;

    t = zeros(N-L,length(range));

    for period = range

        points{i} = 1:period:(size(X0,2)-1);

        points{i} = round(points{i});

        t(points{i},i) = 1;

        T(i) = period;

        i = i + 1;

    end

    

    % Apply the windowing function to the target vectors

    t = filter(window, 1, t);

    

    % Calculate the spectrum of optimal filters

    f = autocorr_inv * X0 * t;

    % Calculate the spectrum of outputs

    y = X0'*f;

    

    % Calculate the spectrum of PKurt values for each output

    MKurt = mkurt(y,t);

    

    % Find the best match

    [MKurt_best index_max] = max(MKurt);

    T_best = T(index_max);

    f_best = f(:,index_max);

    y_best = y(:,index_max);

    

    % Plot the resulting spectrum

    if( plotMode > 0 )

        figure;

        plot(T,MKurt);

        ylabel('Multipoint Kurtosis')

        xlabel('Period (samples)');

        axis('tight')

        

        figure;

        subplot(3,1,1)

        plot(x)

        title('Input signal');

        xlabel('Sample number');

        

        subplot(3,1,2)

        plot(y_best)

        title(strcat(['Best output signal (period=', num2str(T_best), ')']));

        xlabel('Sample number');

        

        subplot(3,1,3)

        stem(f_best)

        title(strcat(['Best filter (period=', num2str(T_best), ')']));

        xlabel('Sample number');

    end

end

function [result] = mkurt(x,target)

    % This function simply calculates the summed kurtosis of the input

    % signal, x, according to the target vector positions.

    result = zeros(size(x,2),1);

    for i = 1:size(x,2)

        result(i) = ( (target(:,i).^4)'*(x(:,i).^4) )/(sum(x(:,i).^2)^2) * sum(abs(target(:,i)));

    end

end

⛄ 运行结果

⛄ 参考文献

[1]孙环宇, 杨志鹏, 王艺玮,等. 基于自适应参数优化RSSD-CYCBD的行星齿轮箱多故障耦合信号分离及诊断[J]. 北京航空航天大学学报, 2022, 48.

⛳️ 代码获取关注我

❤️部分理论引用网络文献,若有侵权联系博主删除

❤️ 关注我领取海量matlab电子书和数学建模资料

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值