✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,
代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
光伏发电是一种可再生能源,越来越受到人们的关注。然而,由于光伏发电存在着许多不确定性因素,如天气、温度、光照等,这些因素对光伏发电的产量造成了很大的影响。因此,为了更好地预测光伏发电的产量,需要对这些不确定性因素进行建模和分析。
在光伏发电的研究中,拉丁超立方抽样(LHS)是一种常用的模拟方法。LHS可以生成一组随机样本,这些样本可以模拟出不同的不确定性因素。通过对这些样本进行计算,可以得到一系列光伏发电的产量情况,从而更好地预测未来的光伏发电量。
在LHS中,每个样本都是由多个参数组成的。这些参数可以是天气、温度、光照等因素。通过对这些参数进行不同的组合,可以生成不同的样本。这些样本可以模拟出不同的天气、温度、光照等情况,从而更好地预测未来的光伏发电量。
除了生成样本外,LHS还可以用于缩减场景。在实际应用中,我们通常只关注一部分参数的影响,而其他参数的影响可以忽略不计。通过LHS,可以筛选出对光伏发电量影响最大的参数,从而缩减场景,减少计算量,提高计算效率。
总之,基于拉丁超立方抽样模拟光伏不确定性生成及缩减场景是一种常用的方法,可以更好地预测光伏发电的产量,提高计算效率。在未来的研究中,我们可以进一步探索LHS的应用,为光伏发电的发展做出更大的贡献。
📣 部分代码
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行
%% 导入数据
res = xlsread('数据集.xlsx');
%% 划分训练集和测试集
temp = randperm(357);
P_train = res(temp(1: 240), 1: 12)';
T_train = res(temp(1: 240), 13)';
M = size(P_train, 2);
P_test = res(temp(241: end), 1: 12)';
T_test = res(temp(241: end), 13)';
N = size(P_test, 2);
%% 数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);
t_train = ind2vec(T_train);
t_test = ind2vec(T_test );
⛳️ 运行结果
🔗 参考文献
[1] 马溪原.含风电电力系统的场景分析方法及其在随机优化中的应用[D].武汉大学,2014.
[2] 蒋程王硕王宝庆张建华赵天阳.基于拉丁超立方采样的含风电电力系统的概率可靠性评估[J].电工技术学报, 2016, 031(010):193-206.