基于拉丁超立方抽样模拟光伏不确定性生成及缩减场景附Matlab实现

文章介绍了如何使用拉丁超立方抽样法对光伏发电的不确定性因素进行建模,以预测产量。通过这种方法生成随机样本并分析参数组合,有助于提高预测精度和计算效率。同时,文中提及了该技术在电力系统、信号处理和路径规划等领域的应用。
摘要由CSDN通过智能技术生成

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,

代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

🔥 内容介绍

光伏发电是一种可再生能源,越来越受到人们的关注。然而,由于光伏发电存在着许多不确定性因素,如天气、温度、光照等,这些因素对光伏发电的产量造成了很大的影响。因此,为了更好地预测光伏发电的产量,需要对这些不确定性因素进行建模和分析。

在光伏发电的研究中,拉丁超立方抽样(LHS)是一种常用的模拟方法。LHS可以生成一组随机样本,这些样本可以模拟出不同的不确定性因素。通过对这些样本进行计算,可以得到一系列光伏发电的产量情况,从而更好地预测未来的光伏发电量。

在LHS中,每个样本都是由多个参数组成的。这些参数可以是天气、温度、光照等因素。通过对这些参数进行不同的组合,可以生成不同的样本。这些样本可以模拟出不同的天气、温度、光照等情况,从而更好地预测未来的光伏发电量。

除了生成样本外,LHS还可以用于缩减场景。在实际应用中,我们通常只关注一部分参数的影响,而其他参数的影响可以忽略不计。通过LHS,可以筛选出对光伏发电量影响最大的参数,从而缩减场景,减少计算量,提高计算效率。

总之,基于拉丁超立方抽样模拟光伏不确定性生成及缩减场景是一种常用的方法,可以更好地预测光伏发电的产量,提高计算效率。在未来的研究中,我们可以进一步探索LHS的应用,为光伏发电的发展做出更大的贡献。

📣 部分代码

%%  清空环境变量warning off             % 关闭报警信息close all               % 关闭开启的图窗clear                   % 清空变量clc                     % 清空命令行%%  导入数据res = xlsread('数据集.xlsx');%%  划分训练集和测试集temp = randperm(357);P_train = res(temp(1: 240), 1: 12)';T_train = res(temp(1: 240), 13)';M = size(P_train, 2);P_test = res(temp(241: end), 1: 12)';T_test = res(temp(241: end), 13)';N = size(P_test, 2);%%  数据归一化[p_train, ps_input] = mapminmax(P_train, 0, 1);p_test  = mapminmax('apply', P_test, ps_input);t_train = ind2vec(T_train);t_test  = ind2vec(T_test );

⛳️ 运行结果

🔗 参考文献

[1] 马溪原.含风电电力系统的场景分析方法及其在随机优化中的应用[D].武汉大学,2014.

[2] 蒋程王硕王宝庆张建华赵天阳.基于拉丁超立方采样的含风电电力系统的概率可靠性评估[J].电工技术学报, 2016, 031(010):193-206.

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码、论文复现、期刊合作、论文辅导及科研仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化
2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值