基于长短期记忆神经网络结合Adaboost实现分类预测LSTM-Adaboost附matlab代码 论文程序 新手专用

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,

代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

🔥 内容介绍

在机器学习和深度学习领域,长短期记忆神经网络(LSTM)和Adaboost都是被广泛应用的算法。它们分别有着不同的特点和优势,而将它们结合起来可以实现更加准确和强大的分类预测模型。

LSTM是一种特殊的循环神经网络(RNN),它在处理序列数据时表现出色。LSTM能够有效地捕捉数据中的长期依赖关系,适用于时间序列数据、自然语言处理等领域。而Adaboost是一种集成学习算法,通过组合多个弱分类器来构建一个强分类器,能够有效地提高模型的准确性。

将LSTM和Adaboost结合起来,可以充分发挥它们各自的优势,从而实现更加准确和强大的分类预测模型。下面我们将详细介绍如何实现基于LSTM-Adaboost的分类预测模型。

首先,我们需要使用LSTM来对输入数据进行特征提取和表示学习。通过LSTM网络,我们可以将输入数据转换为具有丰富语义信息的特征表示,这些特征表示能够更好地反映数据的内在结构和规律。在训练阶段,我们可以使用标记好的数据来训练LSTM网络,通过反向传播算法来更新网络参数,使得网络能够学习到数据的特征表示。

接着,我们将LSTM提取得到的特征表示输入到Adaboost模型中进行进一步的训练和优化。Adaboost能够根据数据的分布情况来调整不同样本的权重,从而使得模型能够更加关注那些难以分类的样本,从而提高整体的分类准确性。通过不断迭代训练,Adaboost能够构建一个强分类器,从而实现更加准确的分类预测。

最后,我们可以将训练好的LSTM-Adaboost模型应用于新的数据进行分类预测。通过LSTM网络的特征提取和Adaboost的集成学习,我们可以得到更加准确和稳健的分类预测结果,从而能够更好地应用于实际的场景中。

总结来说,基于长短期记忆神经网络结合Adaboost实现分类预测的LSTM-Adaboost模型能够充分发挥两者的优势,实现更加准确和强大的分类预测。通过对LSTM和Adaboost的深入理解和合理结合,我们可以构建出适用于各种实际场景的高效分类预测模型。希望本文的介绍能够对相关领域的研究者和开发者有所帮助,引发更多关于LSTM-Adaboost模型的讨论和研究。

📣 部分代码

%%  清空环境变量warning off             % 关闭报警信息close all               % 关闭开启的图窗clear                   % 清空变量clc                     % 清空命令行%%  导入数据res = xlsread('数据集.xlsx');%%  划分训练集和测试集temp = randperm(357);P_train = res(temp(1: 240), 1: 12)';T_train = res(temp(1: 240), 13)';M = size(P_train, 2);P_test = res(temp(241: end), 1: 12)';T_test = res(temp(241: end), 13)';N = size(P_test, 2);%%  数据归一化[p_train, ps_input] = mapminmax(P_train, 0, 1);p_test  = mapminmax('apply', P_test, ps_input);t_train = ind2vec(T_train);t_test  = ind2vec(T_test );

⛳️ 运行结果

🔗 参考文献

本程序参考以下中文EI期刊,程序注释清晰,干货满满。

[1] 方楠,谢国权,阮小建,等.长短期记忆神经网络(LSTM)模型在低能见度预报中的应用[J].气象与环境学报, 2022, 38(5):8.

[2] 魏昱洲,许西宁.基于LSTM长短期记忆网络的超短期风速预测[J].电子测量与仪器学报, 2019(2):8.DOI:CNKI:SUN:DZIY.0.2019-02-008.

[3] 邸浩,赵学军,张自力.基于EEMD-LSTM-Adaboost的商品价格预测[J].统计与决策, 2018(13):5.DOI:10.13546/j.cnki.tjyjc.2018.13.016.

[4] 郭久俊.基于LSTM-Adaboost的多晶硅生产的能耗预测[J].计算机应用与软件, 2018, 35(12):6.DOI:CNKI:SUN:JYRJ.0.2018-12-014.

[5] 李龙祥,彭晨,李军,等.基于LSTM-AdaBoost的城市住宅区负荷预测[J].吉首大学学报(自然科学版), 2021(006):042.

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码、论文复现、期刊合作、论文辅导及科研仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化
2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值