✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,
代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
PID(Proportional-Integral-Derivative)控制器是一种常见的控制器,它通过对误差的比例、积分和微分进行加权来产生控制输出。PID控制器广泛应用于工业自动化、机械控制和过程控制等领域。然而,PID控制器的性能常常受到参数选择的影响,因此,PID参数优化是一个重要的问题。
传统的PID参数优化方法包括试错法、经验法和数学优化法等。然而,这些方法往往需要大量的试验和计算,而且容易陷入局部最优解。近年来,基于群智能算法的PID控制器优化方法受到了广泛关注,其中蜣螂算法是一种较为有效的优化方法。
蜣螂算法是一种基于群体行为的优化算法,它模拟了蜣螂在寻找食物和交配过程中的行为。在蜣螂算法中,每个个体代表一个参数向量,整个群体代表一个解向量。通过模拟蜣螂的觅食和交配行为,蜣螂算法可以自适应地调整参数向量,从而找到最优解。
在基于蜣螂算法的PID控制器优化中,首先需要确定优化目标,例如最小化系统误差、最大化系统响应速度等。然后,将PID控制器的三个参数作为优化变量,将优化目标作为适应度函数,利用蜣螂算法搜索最优解。最终得到的最优参数可以用于实际控制系统中。
与传统的PID参数优化方法相比,基于蜣螂算法的PID控制器优化具有以下优点:
-
自适应性强:蜣螂算法可以自适应地调整参数向量,适应不同的控制系统和优化目标。
-
全局搜索能力强:蜣螂算法可以避免陷入局部最优解,具有较好的全局搜索能力。
-
计算效率高:蜣螂算法的计算复杂度较低,可以在较短的时间内得到较好的优化结果。
基于蜣螂算法的PID控制器优化已经在多个领域得到了应用,例如机器人控制、电力系统控制和化工过程控制等。未来,基于群智能算法的PID控制器优化方法将会得到更广泛的应用,为工业自动化和机械控制等领域提供更好的控制效果。
📣 部分代码
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行
%% 导入数据
res = xlsread('数据集.xlsx');
%% 划分训练集和测试集
temp = randperm(357);
P_train = res(temp(1: 240), 1: 12)';
T_train = res(temp(1: 240), 13)';
M = size(P_train, 2);
P_test = res(temp(241: end), 1: 12)';
T_test = res(temp(241: end), 13)';
N = size(P_test, 2);
%% 数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);
t_train = ind2vec(T_train);
t_test = ind2vec(T_test );
⛳️ 运行结果
🔗 参考文献
[1] 邹治军,张晓江,ZOUZhi-jun,等.基于MATLAB的PID控制器的设计算法及其实现[J].仪器仪表用户, 2005, 12(5):81-83.DOI:10.3969/j.issn.1671-1041.2005.05.044.
[2] 何福忠,孙优贤.基于遗传算法的鲁棒PID控制器参数优化方法及计算程序[C]//过程控制科学报告会.中国化工学会;中国自动化学会, 1999.