【PID优化】基于蜣螂算法PID控制器优化设计含Matlab代码

本文介绍了PID控制器的原理及其在不同领域的应用,重点讨论了传统优化方法的局限性,以及基于蜣螂算法的全局搜索和自适应性强的PID参数优化策略。通过与传统方法对比,展示了蜣螂算法在计算效率和控制效果上的优势。
摘要由CSDN通过智能技术生成

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,

代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

🔥 内容介绍

PID(Proportional-Integral-Derivative)控制器是一种常见的控制器,它通过对误差的比例、积分和微分进行加权来产生控制输出。PID控制器广泛应用于工业自动化、机械控制和过程控制等领域。然而,PID控制器的性能常常受到参数选择的影响,因此,PID参数优化是一个重要的问题。

传统的PID参数优化方法包括试错法、经验法和数学优化法等。然而,这些方法往往需要大量的试验和计算,而且容易陷入局部最优解。近年来,基于群智能算法的PID控制器优化方法受到了广泛关注,其中蜣螂算法是一种较为有效的优化方法。

蜣螂算法是一种基于群体行为的优化算法,它模拟了蜣螂在寻找食物和交配过程中的行为。在蜣螂算法中,每个个体代表一个参数向量,整个群体代表一个解向量。通过模拟蜣螂的觅食和交配行为,蜣螂算法可以自适应地调整参数向量,从而找到最优解。

在基于蜣螂算法的PID控制器优化中,首先需要确定优化目标,例如最小化系统误差、最大化系统响应速度等。然后,将PID控制器的三个参数作为优化变量,将优化目标作为适应度函数,利用蜣螂算法搜索最优解。最终得到的最优参数可以用于实际控制系统中。

与传统的PID参数优化方法相比,基于蜣螂算法的PID控制器优化具有以下优点:

  1. 自适应性强:蜣螂算法可以自适应地调整参数向量,适应不同的控制系统和优化目标。

  2. 全局搜索能力强:蜣螂算法可以避免陷入局部最优解,具有较好的全局搜索能力。

  3. 计算效率高:蜣螂算法的计算复杂度较低,可以在较短的时间内得到较好的优化结果。

基于蜣螂算法的PID控制器优化已经在多个领域得到了应用,例如机器人控制、电力系统控制和化工过程控制等。未来,基于群智能算法的PID控制器优化方法将会得到更广泛的应用,为工业自动化和机械控制等领域提供更好的控制效果。

📣 部分代码

%%  清空环境变量warning off             % 关闭报警信息close all               % 关闭开启的图窗clear                   % 清空变量clc                     % 清空命令行%%  导入数据res = xlsread('数据集.xlsx');%%  划分训练集和测试集temp = randperm(357);P_train = res(temp(1: 240), 1: 12)';T_train = res(temp(1: 240), 13)';M = size(P_train, 2);P_test = res(temp(241: end), 1: 12)';T_test = res(temp(241: end), 13)';N = size(P_test, 2);%%  数据归一化[p_train, ps_input] = mapminmax(P_train, 0, 1);p_test  = mapminmax('apply', P_test, ps_input);t_train = ind2vec(T_train);t_test  = ind2vec(T_test );

⛳️ 运行结果

🔗 参考文献

[1] 邹治军,张晓江,ZOUZhi-jun,等.基于MATLAB的PID控制器的设计算法及其实现[J].仪器仪表用户, 2005, 12(5):81-83.DOI:10.3969/j.issn.1671-1041.2005.05.044.

[2] 何福忠,孙优贤.基于遗传算法的鲁棒PID控制器参数优化方法及计算程序[C]//过程控制科学报告会.中国化工学会;中国自动化学会, 1999.

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码、论文复现、期刊合作、论文辅导及科研仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化
2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值