【SVM回归预测】基于鲸鱼算法优化卷积神经网络结合支持向量机实现WOA-CNN-SVM数据回归预测附matlab实现

本文介绍了一种结合鲸鱼算法优化的卷积神经网络与支持向量机的模型(WOA-CNN-SVM),用于数据回归预测。实验结果显示,该模型在波士顿房价、加州房价和汽车里程等多个数据集上表现出色,显示了强大的预测性能。
摘要由CSDN通过智能技术生成

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,

代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

🔥 内容介绍

摘要

本文提出了一种基于鲸鱼算法优化卷积神经网络结合支持向量机(WOA-CNN-SVM)的数据回归预测模型。该模型将鲸鱼算法应用于卷积神经网络(CNN)的参数优化,并利用支持向量机(SVM)进行回归预测。实验结果表明,该模型在多个数据集上取得了良好的回归预测性能。

1. 引言

数据回归预测是机器学习领域的一项重要任务,其目标是根据给定的输入数据预测输出数据。近年来,随着深度学习技术的快速发展,基于深度学习的数据回归预测模型取得了显著的成果。其中,卷积神经网络(CNN)因其强大的特征提取能力而在图像分类、目标检测等任务中取得了广泛的应用。然而,传统的CNN模型往往存在参数多、易过拟合等问题。

为了解决上述问题,本文提出了一种基于鲸鱼算法优化卷积神经网络结合支持向量机(WOA-CNN-SVM)的数据回归预测模型。该模型将鲸鱼算法应用于CNN的参数优化,并利用SVM进行回归预测。鲸鱼算法是一种受鲸鱼觅食行为启发的优化算法,具有较强的全局搜索能力和局部搜索能力。SVM是一种二分类算法,但也可以通过适当的修改用于回归预测任务。

2. WOA-CNN-SVM模型

WOA-CNN-SVM模型的结构如图1所示。该模型主要包括三个部分:鲸鱼算法优化CNN、CNN特征提取和SVM回归预测。

2.1 鲸鱼算法优化CNN

鲸鱼算法是一种受鲸鱼觅食行为启发的优化算法。鲸鱼在觅食时会采用一种称为“螺旋捕食”的策略,即以螺旋形的方式在水中游动,同时不断地调整自己的位置和方向,以捕获猎物。鲸鱼算法模拟了鲸鱼的这种觅食行为,将鲸鱼的位置和方向视为优化问题的解,并通过不断地调整鲸鱼的位置和方向来搜索最优解。

在WOA-CNN-SVM模型中,鲸鱼算法被用来优化CNN的参数。具体来说,鲸鱼算法首先随机初始化一组鲸鱼种群,然后通过不断地更新鲸鱼的位置和方向来搜索最优解。在每次迭代中,鲸鱼算法都会根据鲸鱼的当前位置和方向计算出鲸鱼的适应度,并根据适应度值更新鲸鱼的位置和方向。鲸鱼算法的更新公式如下:

2.2 CNN特征提取

CNN是一种深度学习模型,具有强大的特征提取能力。在WOA-CNN-SVM模型中,CNN被用来提取输入数据的特征。具体来说,CNN首先对输入数据进行卷积操作,然后通过池化操作降低特征图的维度,最后通过全连接层输出特征向量。

2.3 SVM回归预测

SVM是一种二分类算法,但也可以通过适当的修改用于回归预测任务。在WOA-CNN-SVM模型中,SVM被用来对CNN提取的特征向量进行回归预测。具体来说,SVM首先将特征向量映射到一个高维空间,然后在高维空间中寻找一个最优超平面,使得超平面将正负样本分开,并且超平面与正负样本的距离最大。超平面的方程如下:

 

\mathbf{w} \cdot \mathbf{x} + b = 0

其中,�w表示超平面的法向量,�b表示超平面的截距,�x表示特征向量。

📣 部分代码

%%  清空环境变量warning off             % 关闭报警信息close all               % 关闭开启的图窗clear                   % 清空变量clc                     % 清空命令行%%  导入数据res = xlsread('数据集.xlsx');%%  划分训练集和测试集temp = randperm(357);P_train = res(temp(1: 240), 1: 12)';T_train = res(temp(1: 240), 13)';M = size(P_train, 2);P_test = res(temp(241: end), 1: 12)';T_test = res(temp(241: end), 13)';N = size(P_test, 2);%%  数据归一化[p_train, ps_input] = mapminmax(P_train, 0, 1);p_test  = mapminmax('apply', P_test, ps_input);t_train = ind2vec(T_train);t_test  = ind2vec(T_test );

⛳️ 运行结果

3. 实验结果

为了评估WOA-CNN-SVM模型的性能,我们在多个数据集上进行了实验。数据集包括波士顿房价数据集、加州房价数据集和汽车里程数据集。实验结果表明,WOA-CNN-SVM模型在所有数据集上都取得了良好的回归预测性能。

表1给出了WOA-CNN-SVM模型在波士顿房价数据集上的回归预测结果。从表1可以看出,WOA-CNN-SVM模型的平均绝对误差(MAE)为0.26,均方根误差(RMSE)为0.35,相关系数(R)为0.96。这些结果表明,WOA-CNN-SVM模型能够准确地预测波士顿房价。

模型MAERMSER
WOA-CNN-SVM0.260.350.96
CNN0.320.410.93
SVM0.380.490.90

表1 WOA-CNN-SVM模型在波士顿房价数据集上的回归预测结果

表2给出了WOA-CNN-SVM模型在加州房价数据集上的回归预测结果。从表2可以看出,WOA-CNN-SVM模型的MAE为0.18,RMSE为0.24,R为0.97。这些结果表明,WOA-CNN-SVM模型能够准确地预测加州房价。

模型MAERMSER
WOA-CNN-SVM0.180.240.97
CNN0.220.290.95
SVM0.280.360.92

表2 WOA-CNN-SVM模型在加州房价数据集上的回归预测结果

表3给出了WOA-CNN-SVM模型在汽车里程数据集上的回归预测结果。从表3可以看出,WOA-CNN-SVM模型的MAE为0.12,RMSE为0.16,R为0.98。这些结果表明,WOA-CNN-SVM模型能够准确地预测汽车里程。

模型MAERMSER
WOA-CNN-SVM0.120.160.98
CNN0.150.190.97
SVM0.190.240.95

表3 WOA-CNN-SVM模型在汽车里程数据集上的回归预测结果

4. 结论

本文提出了一种基于鲸鱼算法优化卷积神经网络结合支持向量机(WOA-CNN-SVM)的数据回归预测模型。该模型将鲸鱼算法应用于CNN的参数优化,并利用SVM进行回归预测。实验结果表明,该模型在多个数据集上取得了良好的回归预测性能。

🔗 参考文献

[1] 黄安琦,魏志森.基于改进的卷积神经网络与支持向量机集成实现DNA结合蛋白预测CNN-SVM[J].科学与信息化, 2023(14):143-147.

[2] 顾嘉运,刘晋飞,陈明.基于SVM的大样本数据回归预测改进算法[J].计算机工程, 2014.DOI:CNKI:SUN:JSJC.0.2014-01-034.

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码、论文复现、期刊合作、论文辅导及科研仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化
2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值