【智能倒车】基于模糊自适应PID实现智能倒车控制仿真附Matlab代码

本文介绍了一种结合模糊控制和PID控制的智能倒车控制方法,通过模糊自适应PID控制器精确控制倒车过程,结果显示具有优异的鲁棒性、自适应性和准确性,为自动驾驶倒车控制提供新思路。
摘要由CSDN通过智能技术生成

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机 

🔥 内容介绍

摘要

倒车控制是自动驾驶中一项重要的任务。本文提出了一种基于模糊自适应 PID 控制器的智能倒车控制仿真方法。该方法将模糊控制和 PID 控制相结合,充分利用了模糊控制的非线性处理能力和 PID 控制的鲁棒性,实现了对倒车过程的精确控制。仿真结果表明,该方法能够有效地控制车辆倒车,具有良好的鲁棒性、自适应性和准确性。

引言

倒车控制是自动驾驶中一项重要的任务,也是一项具有挑战性的任务。由于倒车时车辆的运动状态复杂,且受环境因素的影响较大,因此需要一种鲁棒且自适应的控制算法来实现对倒车过程的精确控制。

PID 控制是一种经典的控制算法,具有结构简单、鲁棒性好等优点。然而,PID 控制器的参数通常是固定的,无法适应环境的变化。模糊控制是一种非线性控制算法,能够处理不确定性和非线性问题。

为了充分利用模糊控制和 PID 控制的优点,本文提出了一种基于模糊自适应 PID 控制器的智能倒车控制仿真方法。该方法将模糊控制和 PID 控制相结合,实现了对倒车过程的精确控制。

模糊自适应 PID 控制算法

模糊自适应 PID 控制算法包括以下几个部分:

  1. **模糊控制器:**模糊控制器将倒车过程中的误差和误差变化率作为输入,输出 PID 控制器的参数。模糊控制器采用 Mamdani 推理方法,其规则库如下:

    • 如果误差为正大,并且误差变化率为正大,则输出增益为大,积分时间为短,微分时间为短。

    • 如果误差为正中,并且误差变化率为正中,则输出增益为中,积分时间为中,微分时间为中。

    • 如果误差为正小,并且误差变化率为正小,则输出增益为小,积分时间为长,微分时间为长。

    • 其他情况类似。

  2. **PID 控制器:**PID 控制器根据模糊控制器的输出参数,对倒车过程进行控制。PID 控制器的控制律如下:

     

    u(t) = Kp * e(t) + Ki * ∫e(t)dt + Kd * de(t)/dt

    其中,e(t) 为误差,Kp、Ki、Kd 分别为比例增益、积分增益和微分增益。

  3. **自适应机制:**自适应机制根据倒车过程中的实际情况,调整模糊控制器的规则库和 PID 控制器的参数。自适应机制采用遗传算法,其目标函数为倒车过程的误差平方和。

本文提出了一种基于模糊自适应 PID 控制器的智能倒车控制仿真方法。该方法将模糊控制和 PID 控制相结合,充分利用了模糊控制的非线性处理能力和 PID 控制的鲁棒性,实现了对倒车过程的精确控制。仿真结果表明,该方法具有良好的鲁棒性、自适应性和准确性,为自动驾驶中倒车控制问题的解决提供了新的思路。

📣 部分代码

clc;clear;close all;l = 38;%汽车长w = 25; %汽车宽Ts =0.55; %采样时间间隔 - secondN=2000; % 最大循环次数fuzzyfis=readfis('boche.fis');fuzzyfis1=readfis('vp.fis'); %汽车车身起始位置x(1) =-10; %汽车起点的x坐标y(1) =30; %汽车起点的y坐标phi(1) =-10; %汽车车身起始倾角v(1)=10;b=0;phir(1)=54;figure;pause(1);for i=1:1:N-1    pause(0.1);     if  y(i) >= 80        b=3;     end    if  phi(i) >= 55        phir(i)=54;    end    yr(i)=y(i)-b;    inputcanshu=[x(i),yr(i),

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化
2 机器学习和深度学习方面

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值