✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
摘要
倒车控制是自动驾驶中一项重要的任务。本文提出了一种基于模糊自适应 PID 控制器的智能倒车控制仿真方法。该方法将模糊控制和 PID 控制相结合,充分利用了模糊控制的非线性处理能力和 PID 控制的鲁棒性,实现了对倒车过程的精确控制。仿真结果表明,该方法能够有效地控制车辆倒车,具有良好的鲁棒性、自适应性和准确性。
引言
倒车控制是自动驾驶中一项重要的任务,也是一项具有挑战性的任务。由于倒车时车辆的运动状态复杂,且受环境因素的影响较大,因此需要一种鲁棒且自适应的控制算法来实现对倒车过程的精确控制。
PID 控制是一种经典的控制算法,具有结构简单、鲁棒性好等优点。然而,PID 控制器的参数通常是固定的,无法适应环境的变化。模糊控制是一种非线性控制算法,能够处理不确定性和非线性问题。
为了充分利用模糊控制和 PID 控制的优点,本文提出了一种基于模糊自适应 PID 控制器的智能倒车控制仿真方法。该方法将模糊控制和 PID 控制相结合,实现了对倒车过程的精确控制。
模糊自适应 PID 控制算法
模糊自适应 PID 控制算法包括以下几个部分:
-
**模糊控制器:**模糊控制器将倒车过程中的误差和误差变化率作为输入,输出 PID 控制器的参数。模糊控制器采用 Mamdani 推理方法,其规则库如下:
-
如果误差为正大,并且误差变化率为正大,则输出增益为大,积分时间为短,微分时间为短。
-
如果误差为正中,并且误差变化率为正中,则输出增益为中,积分时间为中,微分时间为中。
-
如果误差为正小,并且误差变化率为正小,则输出增益为小,积分时间为长,微分时间为长。
-
其他情况类似。
-
-
**PID 控制器:**PID 控制器根据模糊控制器的输出参数,对倒车过程进行控制。PID 控制器的控制律如下:
u(t) = Kp * e(t) + Ki * ∫e(t)dt + Kd * de(t)/dt
其中,e(t) 为误差,Kp、Ki、Kd 分别为比例增益、积分增益和微分增益。
-
**自适应机制:**自适应机制根据倒车过程中的实际情况,调整模糊控制器的规则库和 PID 控制器的参数。自适应机制采用遗传算法,其目标函数为倒车过程的误差平方和。
本文提出了一种基于模糊自适应 PID 控制器的智能倒车控制仿真方法。该方法将模糊控制和 PID 控制相结合,充分利用了模糊控制的非线性处理能力和 PID 控制的鲁棒性,实现了对倒车过程的精确控制。仿真结果表明,该方法具有良好的鲁棒性、自适应性和准确性,为自动驾驶中倒车控制问题的解决提供了新的思路。
📣 部分代码
clc;
clear;
close all;
l = 38;%汽车长
w = 25; %汽车宽
Ts =0.55; %采样时间间隔 - second
N=2000; % 最大循环次数
fuzzyfis=readfis('boche.fis');
fuzzyfis1=readfis('vp.fis');
%汽车车身起始位置
x(1) =-10; %汽车起点的x坐标
y(1) =30; %汽车起点的y坐标
phi(1) =-10; %汽车车身起始倾角
v(1)=10;
b=0;
phir(1)=54;
figure;
pause(1);
for i=1:1:N-1
pause(0.1);
if y(i) >= 80
b=3;
end
if phi(i) >= 55
phir(i)=54;
end
yr(i)=y(i)-b;
inputcanshu=[x(i),yr(i),
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类