✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
【通信】具有继电器选择的能量收集协作NOMA系统的中断性能分析
摘要
本文研究了具有继电器选择的能量收集协作非正交多址(NOMA)系统的中断性能。我们考虑了一个能量受限的源节点,它可以从环境中收集能量,并通过一个继电器节点向两个目标节点传输信息。我们提出了一种基于继电器选择的NOMA方案,其中继电器节点根据源节点的能量状态和信道条件选择转发哪个目标节点的数据。我们推导出中断概率的解析表达式,并分析了系统参数对中断性能的影响。仿真结果验证了分析结果,并表明所提出的方案可以有效提高能量收集NOMA系统的中断性能。
引言
能量收集无线网络(EHWNs)是一种有前途的技术,它通过从环境中收集能量为无线设备供电,从而延长其电池寿命。非正交多址(NOMA)是一种多址技术,它允许多个用户同时使用相同的频谱资源,从而提高频谱效率。协作NOMA是一种NOMA方案,其中用户协作转发彼此的数据,以提高覆盖范围和可靠性。
在本文中,我们研究了具有继电器选择的能量收集协作NOMA系统的中断性能。我们考虑了一个能量受限的源节点,它可以从环境中收集能量,并通过一个继电器节点向两个目标节点传输信息。我们提出了一种基于继电器选择的NOMA方案,其中继电器节点根据源节点的能量状态和信道条件选择转发哪个目标节点的数据。
系统模型
我们考虑一个能量收集协作NOMA系统,其中一个能量受限的源节点(S)通过一个继电器节点(R)向两个目标节点(D1和D2)传输信息。S可以从环境中收集能量,并存储在电池中。R是一个半双工继电器,它可以转发S的数据或从S收集能量。
信道模型如下:
我们假设所有信道都是独立的,服从瑞利衰落模型。
继电器选择方案
我们提出了一种基于继电器选择的NOMA方案,其中R根据S的能量状态和信道条件选择转发哪个目标节点的数据。具体来说,R选择转发D1的数据,如果以下条件满足:
E > E_th && |h_{SR}h_{RD1}|^2 > |h_{SR}h_{RD2}|^2
中断分析
我们推导出中断概率的解析表达式,其中中断定义为S无法成功向任何目标节点传输数据。中断概率为:
P_{out} = P_{out,1} + P_{out,2} - P_{out,1}P_{out,2}
📣 部分代码
function [A,B] = bosong(M)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%泊松分布点生成
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Lambda = 20; % Lambda:poisson(Lambda)
%u = unifrnd(0,1);
%M = 0;
%while u >= exp(-Lambda)%判定条件
% u = u*unifrnd(0,1);
% M=M+1;
%end
%取点个数
R = poissrnd(Lambda,1,M) ;
%%% Part2 %%%
a = 0; c = 0;
b = 1; d =1;
%e = 0; f = 100; %取[0,1]*[0,1]的布点区域;
Nall = M;
% A = [];
% B = [];
while M > 0 %scatter in the [0,1]*[0,1]
M = M-1;
u1 = unifrnd(0,1);
A(Nall-M) = (b-a)*u1;
u2 = unifrnd(0,1);
B(Nall-M) = (d-c)*u2;
%u3 = unifrnd(0,1);
%C(Nall-M) = (f-e)*u3;
%figure(1) ; %base stations 分布图
%plot3(A(Nall-M),B(Nall-M),C(Nall-M),'r^');
%hold on;
%plot(A(Nall-M),B(Nall-M),'b.')
%hold on
end
%grid on
⛳️ 运行结果
仿真结果
我们通过仿真验证了分析结果。图1显示了中断概率随源节点能量的变化情况。可以看出,随着源节点能量的增加,中断概率降低。这是因为源节点有更多的能量来传输数据。
图2显示了中断概率随继电器到目标节点信道增益的变化情况。可以看出,随着继电器到目标节点信道增益的增加,中断概率降低。这是因为继电器可以更可靠地转发数据。
结论
本文研究了具有继电器选择的能量收集协作NOMA系统的中断性能。我们提出了一个基于继电器选择的NOMA方案,其中继电器节点根据源节点的能量状态和信道条件选择转发哪个目标节点的数据。我们推导出中断概率的解析表达式,并分析了系统参数对中断性能的影响。仿真结果验证了分析结果,并表明所提出的方案可以有效提高能量收集NOMA系统的中断性能。
🔗 参考文献
[1] 王运峰.基于协作通信和能量收集技术的NOMA系统建模与性能分析[D].曲阜师范大学,2019.
[2] 李素月,王安红,武迎春,等.一种基于中继选择和能量收集的NOMA系统多用户性能分析方法:201811313660[P][2024-02-29].
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类