【通信】具有继电器选择的能量收集协作NOMA系统的中断性能分析matlab代码

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机 

物理应用             机器学习

🔥 内容介绍

【通信】具有继电器选择的能量收集协作NOMA系统的中断性能分析

摘要

本文研究了具有继电器选择的能量收集协作非正交多址(NOMA)系统的中断性能。我们考虑了一个能量受限的源节点,它可以从环境中收集能量,并通过一个继电器节点向两个目标节点传输信息。我们提出了一种基于继电器选择的NOMA方案,其中继电器节点根据源节点的能量状态和信道条件选择转发哪个目标节点的数据。我们推导出中断概率的解析表达式,并分析了系统参数对中断性能的影响。仿真结果验证了分析结果,并表明所提出的方案可以有效提高能量收集NOMA系统的中断性能。

引言

能量收集无线网络(EHWNs)是一种有前途的技术,它通过从环境中收集能量为无线设备供电,从而延长其电池寿命。非正交多址(NOMA)是一种多址技术,它允许多个用户同时使用相同的频谱资源,从而提高频谱效率。协作NOMA是一种NOMA方案,其中用户协作转发彼此的数据,以提高覆盖范围和可靠性。

在本文中,我们研究了具有继电器选择的能量收集协作NOMA系统的中断性能。我们考虑了一个能量受限的源节点,它可以从环境中收集能量,并通过一个继电器节点向两个目标节点传输信息。我们提出了一种基于继电器选择的NOMA方案,其中继电器节点根据源节点的能量状态和信道条件选择转发哪个目标节点的数据。

系统模型

我们考虑一个能量收集协作NOMA系统,其中一个能量受限的源节点(S)通过一个继电器节点(R)向两个目标节点(D1和D2)传输信息。S可以从环境中收集能量,并存储在电池中。R是一个半双工继电器,它可以转发S的数据或从S收集能量。

信道模型如下:

我们假设所有信道都是独立的,服从瑞利衰落模型。

继电器选择方案

我们提出了一种基于继电器选择的NOMA方案,其中R根据S的能量状态和信道条件选择转发哪个目标节点的数据。具体来说,R选择转发D1的数据,如果以下条件满足:

 

E > E_th && |h_{SR}h_{RD1}|^2 > |h_{SR}h_{RD2}|^2

中断分析

我们推导出中断概率的解析表达式,其中中断定义为S无法成功向任何目标节点传输数据。中断概率为:

 

P_{out} = P_{out,1} + P_{out,2} - P_{out,1}P_{out,2}

📣 部分代码

function [A,B] = bosong(M)%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%泊松分布点生成%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Lambda = 20;  % Lambda:poisson(Lambda)%u = unifrnd(0,1);%M = 0;%while u >= exp(-Lambda)%判定条件%    u = u*unifrnd(0,1);%    M=M+1;%end     %取点个数R = poissrnd(Lambda,1,M) ;%%% Part2 %%%a = 0; c = 0;b = 1; d =1;%e = 0; f = 100;     %取[0,1]*[0,1]的布点区域;Nall = M;% A = [];% B = [];while M > 0         %scatter in the [0,1]*[0,1]    M = M-1;    u1 = unifrnd(0,1);    A(Nall-M) = (b-a)*u1;    u2 = unifrnd(0,1);    B(Nall-M) = (d-c)*u2;    %u3 = unifrnd(0,1);    %C(Nall-M) = (f-e)*u3;    %figure(1)  ;  %base stations 分布图    %plot3(A(Nall-M),B(Nall-M),C(Nall-M),'r^');    %hold on;    %plot(A(Nall-M),B(Nall-M),'b.')    %hold onend%grid on

⛳️ 运行结果

仿真结果

我们通过仿真验证了分析结果。图1显示了中断概率随源节点能量的变化情况。可以看出,随着源节点能量的增加,中断概率降低。这是因为源节点有更多的能量来传输数据。

图2显示了中断概率随继电器到目标节点信道增益的变化情况。可以看出,随着继电器到目标节点信道增益的增加,中断概率降低。这是因为继电器可以更可靠地转发数据。

结论

本文研究了具有继电器选择的能量收集协作NOMA系统的中断性能。我们提出了一个基于继电器选择的NOMA方案,其中继电器节点根据源节点的能量状态和信道条件选择转发哪个目标节点的数据。我们推导出中断概率的解析表达式,并分析了系统参数对中断性能的影响。仿真结果验证了分析结果,并表明所提出的方案可以有效提高能量收集NOMA系统的中断性能。

🔗 参考文献

[1] 王运峰.基于协作通信和能量收集技术的NOMA系统建模与性能分析[D].曲阜师范大学,2019.

[2] 李素月,王安红,武迎春,等.一种基于中继选择和能量收集的NOMA系统多用户性能分析方法:201811313660[P][2024-02-29].

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化
2 机器学习和深度学习方面

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值