✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
无人机三维航迹规划是无人机自主飞行控制的关键技术之一,在山区等复杂地形环境下,无人机需要避开障碍物,并选择最佳路径到达目标点。灰狼算法是一种近年来发展起来的群体智能优化算法,具有收敛速度快、鲁棒性强等优点。本文研究了基于灰狼算法和改进的灰狼算法的无人机三维航迹规划方法。首先,建立了考虑障碍物和地形约束的三维航迹规划模型;然后,分别设计了基于灰狼算法和改进的灰狼算法的路径规划算法;最后,通过仿真实验对两种算法的性能进行了比较分析。结果表明,改进的灰狼算法在路径长度、飞行时间和路径平滑性等方面均优于灰狼算法,能够有效地规划出避开障碍物、飞行时间短且路径平滑的无人机三维航迹。
关键词
无人机,三维航迹规划,灰狼算法,改进的灰狼算法,障碍物,山体
1. 引言
无人机作为一种新型的飞行器,近年来得到了广泛的应用。在山区等复杂地形环境下,无人机需要避开障碍物,并选择最佳路径到达目标点。航迹规划是无人机自主飞行控制的关键技术之一,其目的是规划出一条安全、高效的飞行路径。
传统的航迹规划方法主要包括人工规划和基于规则的方法。人工规划方法需要人工干预,效率低下,难以满足复杂环境下的需求。基于规则的方法需要预先设定规则,灵活性差,难以适应动态变化的环境。
近年来,群体智能优化算法在无人机航迹规划中得到了广泛的应用。灰狼算法是一种近年来发展起来的群体智能优化算法,具有收敛速度快、鲁棒性强等优点。本文研究了基于灰狼算法和改进的灰狼算法的无人机三维航迹规划方法。
2. 问题描述
本文研究的无人机三维航迹规划问题如下:
-
无人机从起点出发,到达目标点。
-
无人机需要避开障碍物,包括山体、树木等。
-
无人机需要选择一条安全、高效的路径,即路径长度短、飞行时间短、路径平滑。
3. 模型建立
3.1 航迹模型
无人机的三维航迹可以用一系列三维点来表示,每个点代表无人机在某个时刻的位置。假设无人机的速度为v,则无人机从第i个点飞到第j个点的时间为:
���=����
3.2 约束条件
无人机航迹规划需要满足以下约束条件:
-
无人机需要避开障碍物。
-
无人机需要满足飞行高度限制。
-
无人机需要满足飞行速度限制。
4. 算法设计
4.1 灰狼算法
灰狼算法是一种模拟灰狼捕猎行为的群体智能优化算法。灰狼种群中,领导者称为α狼,负责决策和指挥;其次是β狼和δ狼,负责辅助α狼;其余的狼称为ω狼,负责跟随α狼、β狼和δ狼。
灰狼算法的步骤如下:
-
初始化灰狼种群。
-
计算每个灰狼的适应度值。
-
更新α狼、β狼、δ狼的位置。
-
更新ω狼的位置。
-
判断是否满足终止条件,如果不满足则返回步骤2。
4.2 改进的灰狼算法
为了提高灰狼算法的性能,本文对灰狼算法进行了改进。改进的灰狼算法在更新ω狼的位置时,加入了随机扰动项,以提高算法的全局搜索能力。改进的灰狼算法的步骤如下:
-
初始化灰狼种群。
-
计算每个灰狼的适应度值。
-
更新α狼、β狼、δ狼的位置。
-
更新ω狼的位置,并加入随机扰动项。
-
判断是否满足终止条件,如果不满足则返回步骤2。
5. 仿真实验
为了验证两种算法的性能,本文进行了仿真实验。实验环境为山区地形,无人机需要从起点到达目标点,并避开山体等障碍物。
实验结果表明,改进的灰狼算法在路径长度、飞行时间和路径平滑性等方面均优于灰狼算法。改进的灰狼算法能够有效地规划出避开障碍物、飞行时间短且路径平滑的无人机三维航迹。
6. 结论
本文研究了基于灰狼算法和改进的灰狼算法的无人机三维航迹规划方法。结果表明,改进的灰狼算法在路径长度、飞行时间和路径平滑性等方面均优于灰狼算法,能够有效地规划出避开障碍物、飞行时间短且路径平滑的无人机三维航迹。
⛳️ 运行结果
🔗 参考文献
[1]高明生,徐楷文,李建.一种基于改进灰狼算法的无人机3D路径规划方法.CN202211146728.6[2024-05-07].
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类