【创新未发表】Matlab实现遗传算法GA-Kmean-Transformer-BiLSTM负荷预测算法研究

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

物理应用        机器学习

🔥 内容介绍

摘要

电力负荷预测是电力系统稳定运行的重要基础,准确预测负荷变化趋势对于电力系统调度、安全运行及节能减排具有重要意义。近年来,机器学习技术在负荷预测领域取得了显著进展,其中,Transformer 和双向长短期记忆网络(BiLSTM)等深度学习模型展现出优越的性能。然而,现有的方法通常存在以下缺陷:1)对数据特征提取能力有限,难以充分利用数据中的潜在信息;2)模型参数难以优化,需要人工设定,且缺乏自适应能力。

针对上述问题,本文提出了一种基于遗传算法(GA)优化的 K-means 聚类、Transformer 和 BiLSTM 混合模型(GA-Kmean-Transformer-BiLSTM)的电力负荷预测方法。该方法首先利用 K-means 聚类算法将原始数据划分为多个子集,然后分别使用 Transformer 和 BiLSTM 模型对每个子集进行特征提取和预测,最后利用 GA 算法优化模型参数,提高模型预测精度。

本文的主要贡献包括:

  • 提出了一个新的 GA-Kmean-Transformer-BiLSTM 混合模型,结合了 K-means 聚类、Transformer 和 BiLSTM 模型的优势,提高了负荷预测的准确性。

  • 利用 GA 算法优化模型参数,使模型具有更高的自适应性,能够更好地应对不同类型负荷数据的特点。

  • 通过 Matlab 平台进行实验验证,证明了该方法的有效性和优越性。

关键词: 电力负荷预测,遗传算法,K-means 聚类,Transformer,BiLSTM

1. 引言

电力负荷是电力系统运行的基础,准确预测负荷变化趋势对于电力系统调度、安全运行及节能减排具有重要意义。随着电力系统规模的不断扩大和负荷结构的日益复杂,传统预测方法的精度和适用性受到了挑战。近年来,机器学习技术在电力负荷预测领域取得了显著进展,其中,深度学习模型凭借其强大的特征提取能力和非线性映射能力,在电力负荷预测方面展现出优越的性能。

Transformer 模型是近年来在自然语言处理领域取得巨大成功的深度学习模型,其核心思想是利用自注意力机制提取数据中的长距离依赖关系,并有效地处理序列数据中的时序信息。BiLSTM 模型则通过将两个方向的 LSTM 网络连接起来,能够双向捕捉时间序列数据中的时间信息,进而提高模型预测精度。

然而,现有的基于 Transformer 和 BiLSTM 的负荷预测方法存在一些局限性:

  • 特征提取能力不足: 现有模型通常对数据特征提取能力有限,难以充分利用数据中蕴藏的潜在信息。

  • 模型参数优化困难: 模型参数的设定往往需要人工进行,缺乏自适应能力,难以适应不同类型的负荷数据。

为了解决上述问题,本文提出了一种基于遗传算法优化的 K-means 聚类、Transformer 和 BiLSTM 混合模型(GA-Kmean-Transformer-BiLSTM)的电力负荷预测方法。该方法通过将原始数据划分为多个子集,分别使用 Transformer 和 BiLSTM 模型进行特征提取和预测,并利用 GA 算法优化模型参数,以提高模型预测精度。

2. 算法原理

2.1 K-means 聚类

K-means 聚类是一种基于距离的无监督学习算法,其目标是将数据集划分为多个子集,每个子集内的样本尽可能地相似,而不同子集之间的样本尽可能地不同。算法流程如下:

  1. 随机选择 k 个样本作为聚类中心。

  2. 计算每个样本到 k 个聚类中心的距离,将样本分配到距离最近的聚类中心所在的子集。

  3. 重新计算每个子集的中心点。

  4. 重复步骤 2 和 3,直到聚类中心不再发生变化。

2.2 Transformer 模型

Transformer 模型是一种基于自注意力机制的深度学习模型,它能够有效地捕获数据中的长距离依赖关系。其核心思想是通过自注意力机制,计算每个词与其他词之间的相关性,进而提取语义信息。Transformer 模型包含编码器和解码器两部分,其中编码器负责将输入序列转换为特征向量,解码器则根据编码器输出的特征向量生成目标序列。

2.3 BiLSTM 模型

BiLSTM 模型是 LSTM 网络的双向扩展,它能够同时从两个方向捕捉时间序列数据中的时间信息,从而提高模型预测精度。BiLSTM 模型包含两个方向的 LSTM 网络,分别从正向和反向处理时间序列数据,并将两个方向的输出结果进行拼接,以获得更全面的时间信息。

2.4 遗传算法

遗传算法是一种模拟生物进化过程的优化算法,它通过随机生成初始种群,并利用交叉、变异等操作进行迭代优化,最终获得最优解。遗传算法的流程如下:

  1. 生成初始种群。

  2. 评估每个个体的适应度。

  3. 选择适应度高的个体进行交叉和变异操作。

  4. 生成新的种群。

  5. 重复步骤 2-4,直到满足停止条件。

3. 算法实现

3.1 数据预处理

首先,需要对原始负荷数据进行预处理,包括数据清洗、归一化和特征提取等操作。

3.2 K-means 聚类

利用 K-means 聚类算法将原始数据划分为多个子集,每个子集对应一种负荷类型。

3.3 Transformer 和 BiLSTM 模型训练

对于每个子集,分别使用 Transformer 和 BiLSTM 模型进行训练。

3.4 GA 算法优化

使用 GA 算法优化 Transformer 和 BiLSTM 模型的参数,以提高模型预测精度。

3.5 预测

利用训练好的模型对未来负荷进行预测。

4. 实验结果

4.1 实验数据集

本文使用某电力公司的历史负荷数据进行实验,数据时间跨度为一年,包含 8760 个数据点。

4.2 实验结果分析

实验结果表明,GA-Kmean-Transformer-BiLSTM 模型在负荷预测方面取得了较好的效果,其预测精度明显优于其他方法。

5. 结论

本文提出了一种基于遗传算法优化的 K-means 聚类、Transformer 和 BiLSTM 混合模型(GA-Kmean-Transformer-BiLSTM)的电力负荷预测方法,该方法通过结合 K-means 聚类、Transformer 和 BiLSTM 模型的优势,并利用 GA 算法优化模型参数,有效提高了负荷预测的准确性。实验结果表明,该方法具有较高的预测精度和较强的适应性,能够有效解决传统负荷预测方法存在的不足,为电力系统运行和调度提供了新的技术手段。

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料

🎁  私信完整代码和数据获取及论文数模仿真定制🌈

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值