✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
摘要
电力负荷预测是电力系统稳定运行的重要基础,准确预测负荷变化趋势对于电力系统调度、安全运行及节能减排具有重要意义。近年来,机器学习技术在负荷预测领域取得了显著进展,其中,Transformer 和双向长短期记忆网络(BiLSTM)等深度学习模型展现出优越的性能。然而,现有的方法通常存在以下缺陷:1)对数据特征提取能力有限,难以充分利用数据中的潜在信息;2)模型参数难以优化,需要人工设定,且缺乏自适应能力。
针对上述问题,本文提出了一种基于遗传算法(GA)优化的 K-means 聚类、Transformer 和 BiLSTM 混合模型(GA-Kmean-Transformer-BiLSTM)的电力负荷预测方法。该方法首先利用 K-means 聚类算法将原始数据划分为多个子集,然后分别使用 Transformer 和 BiLSTM 模型对每个子集进行特征提取和预测,最后利用 GA 算法优化模型参数,提高模型预测精度。
本文的主要贡献包括:
-
提出了一个新的 GA-Kmean-Transformer-BiLSTM 混合模型,结合了 K-means 聚类、Transformer 和 BiLSTM 模型的优势,提高了负荷预测的准确性。
-
利用 GA 算法优化模型参数,使模型具有更高的自适应性,能够更好地应对不同类型负荷数据的特点。
-
通过 Matlab 平台进行实验验证,证明了该方法的有效性和优越性。
关键词: 电力负荷预测,遗传算法,K-means 聚类,Transformer,BiLSTM
1. 引言
电力负荷是电力系统运行的基础,准确预测负荷变化趋势对于电力系统调度、安全运行及节能减排具有重要意义。随着电力系统规模的不断扩大和负荷结构的日益复杂,传统预测方法的精度和适用性受到了挑战。近年来,机器学习技术在电力负荷预测领域取得了显著进展,其中,深度学习模型凭借其强大的特征提取能力和非线性映射能力,在电力负荷预测方面展现出优越的性能。
Transformer 模型是近年来在自然语言处理领域取得巨大成功的深度学习模型,其核心思想是利用自注意力机制提取数据中的长距离依赖关系,并有效地处理序列数据中的时序信息。BiLSTM 模型则通过将两个方向的 LSTM 网络连接起来,能够双向捕捉时间序列数据中的时间信息,进而提高模型预测精度。
然而,现有的基于 Transformer 和 BiLSTM 的负荷预测方法存在一些局限性:
-
特征提取能力不足: 现有模型通常对数据特征提取能力有限,难以充分利用数据中蕴藏的潜在信息。
-
模型参数优化困难: 模型参数的设定往往需要人工进行,缺乏自适应能力,难以适应不同类型的负荷数据。
为了解决上述问题,本文提出了一种基于遗传算法优化的 K-means 聚类、Transformer 和 BiLSTM 混合模型(GA-Kmean-Transformer-BiLSTM)的电力负荷预测方法。该方法通过将原始数据划分为多个子集,分别使用 Transformer 和 BiLSTM 模型进行特征提取和预测,并利用 GA 算法优化模型参数,以提高模型预测精度。
2. 算法原理
2.1 K-means 聚类
K-means 聚类是一种基于距离的无监督学习算法,其目标是将数据集划分为多个子集,每个子集内的样本尽可能地相似,而不同子集之间的样本尽可能地不同。算法流程如下:
-
随机选择 k 个样本作为聚类中心。
-
计算每个样本到 k 个聚类中心的距离,将样本分配到距离最近的聚类中心所在的子集。
-
重新计算每个子集的中心点。
-
重复步骤 2 和 3,直到聚类中心不再发生变化。
2.2 Transformer 模型
Transformer 模型是一种基于自注意力机制的深度学习模型,它能够有效地捕获数据中的长距离依赖关系。其核心思想是通过自注意力机制,计算每个词与其他词之间的相关性,进而提取语义信息。Transformer 模型包含编码器和解码器两部分,其中编码器负责将输入序列转换为特征向量,解码器则根据编码器输出的特征向量生成目标序列。
2.3 BiLSTM 模型
BiLSTM 模型是 LSTM 网络的双向扩展,它能够同时从两个方向捕捉时间序列数据中的时间信息,从而提高模型预测精度。BiLSTM 模型包含两个方向的 LSTM 网络,分别从正向和反向处理时间序列数据,并将两个方向的输出结果进行拼接,以获得更全面的时间信息。
2.4 遗传算法
遗传算法是一种模拟生物进化过程的优化算法,它通过随机生成初始种群,并利用交叉、变异等操作进行迭代优化,最终获得最优解。遗传算法的流程如下:
-
生成初始种群。
-
评估每个个体的适应度。
-
选择适应度高的个体进行交叉和变异操作。
-
生成新的种群。
-
重复步骤 2-4,直到满足停止条件。
3. 算法实现
3.1 数据预处理
首先,需要对原始负荷数据进行预处理,包括数据清洗、归一化和特征提取等操作。
3.2 K-means 聚类
利用 K-means 聚类算法将原始数据划分为多个子集,每个子集对应一种负荷类型。
3.3 Transformer 和 BiLSTM 模型训练
对于每个子集,分别使用 Transformer 和 BiLSTM 模型进行训练。
3.4 GA 算法优化
使用 GA 算法优化 Transformer 和 BiLSTM 模型的参数,以提高模型预测精度。
3.5 预测
利用训练好的模型对未来负荷进行预测。
4. 实验结果
4.1 实验数据集
本文使用某电力公司的历史负荷数据进行实验,数据时间跨度为一年,包含 8760 个数据点。
4.2 实验结果分析
实验结果表明,GA-Kmean-Transformer-BiLSTM 模型在负荷预测方面取得了较好的效果,其预测精度明显优于其他方法。
5. 结论
本文提出了一种基于遗传算法优化的 K-means 聚类、Transformer 和 BiLSTM 混合模型(GA-Kmean-Transformer-BiLSTM)的电力负荷预测方法,该方法通过结合 K-means 聚类、Transformer 和 BiLSTM 模型的优势,并利用 GA 算法优化模型参数,有效提高了负荷预测的准确性。实验结果表明,该方法具有较高的预测精度和较强的适应性,能够有效解决传统负荷预测方法存在的不足,为电力系统运行和调度提供了新的技术手段。
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🎁 私信完整代码和数据获取及论文数模仿真定制🌈
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类