✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
四旋翼无人机是一种具有六个自由度和四个输入的欠驱动强耦合、外型新颖结构简单的飞行器。由于其具有制造成本地、重量轻、体积小、操作简单、使用方便、隐身性好、对作战环境要求低的特点,使其能准确、高效的执行各种军事或民用任务,因此四旋翼无人机具有一定的军事和民用价值。本课题针对四旋翼无人机的特点和飞行原理,对其动力学分析以及运动控制的研究,利用牛顿—欧拉方程,建立了四旋翼无人机的动力学模型,并针对该模型设计了PID四通道控制系统,且在Matlab/Simulink仿真平台上,利用PID控制系统对四旋翼无人机进行仿真,完成了对四旋翼无人机运动控制和与地面运动物体的交会,仿真结果表明:仅仅通过改变四只旋翼的转速来改变升力,进而改变四旋翼无人机的姿态控制和位置控制,从而实现了四旋翼无人机的运动控制以及与地面运动物体的交会。
首先,介绍四旋翼无人机的研究现状以及研究的目的和意义。
其次,通过对四旋翼无人机的特点、运动方式的分析和建模方法研究,建立了六自由度四旋翼动力学模型,并详细分析了其动力学特性,得出了动力学方程。
再次,对PID的基本理论知识进行了深入研究。
最后,对matlab下的Simulink仿真软件做了部分介绍,并利用PID控制算法在Simulink建立了四旋翼无人机的姿态和位置控制仿真模型。仿真结果表明利用PID控制算法的有效性。
1.1 课题研究背景
无人机(UAV, Unmanned Aerial Vehicle),是一种装载有动力装置的无人驾驶飞行器。与传统的有人驾驶飞机相比,无人机不收人的生理极限和心理限制,可以执行危险性答的任务,可代替人类完成高危环境以及山区恶劣环境条件下的任务。
因此,UAV有着广泛的应用:军事上可用于侦查、监控、反恐作战等;民用上可用于航拍、交通巡逻、架空线缆巡检、危险区域巡查和救灾等。在一些危险区域或不可抵达的环境中,无人机显得更为重要。相较于有人驾驶的飞机,无人机的飞行控制系统设计更为重要。由于没有人的直接操纵,所以要求无人机能自动调整其姿态、速度、航迹,甚至还要求无人机在运行过程中能根据任务需求自主进行飞行调度和航迹规划。
无人机根据其机翼的类型可以分为固定翼式和旋翼式无人机。固定翼式无人机在技术上已经非常成熟,其应用也相当的广泛。在军事上,无人机凭借无人驾驶,机动性好,飞行时间长,便于隐蔽等特点在战争中起到越来越重要的作用。美国空军在1997年专门成立了无人机作战实验室。在海湾战争、科索沃战争、阿富汗战争、伊拉克战争等多次局部战争中,投入“全球鹰”,“捕食者”为代表的数百架无人机直接参与军事行动,起到了明显的效果。特别地,在伊拉克战争中,“捕食者”的任务是为战斗机识别目标,其任务完成率达77.2%。“全球鹰”则为摧毁伊拉克防空武器的行动提供了一半以上的目标锁定对象。此外,美国还在境外修建无人机基地,用来打击“基地”等恐怖组织,且逐渐成为猎杀的主要手段。美国使用无人机在军事上的成功应用,让各国纷纷效仿,开始重视并加快对无人机的开发和研制。在民事应用上,无人机可用于重大灾难抢险和森林火警监控、天气预报、航空拍摄、摄影测量、跟踪搜索等方面。
相比于固定翼式无人机,旋翼式无人机发展缓慢的多。主要原因是旋翼式飞行器的控制远比固定翼式复杂。但是,旋翼式无人机轻便灵活,能够垂直起降,对起降场地要求低,适应各种环境,能够实现悬停和全方面的飞行动作,这些优点也决定了旋翼式无人机比固定翼式无人机具有更为广阔的应用场景。因此,越来越多的人开始关注并研究旋翼式无人机。
在旋翼式无人机中,四旋翼飞行器是多旋翼飞行器中常见的一种。由于四旋翼无人机具有体积小和质量轻、隐蔽性和安全性好、可灵活垂直起降、飞行高度低、机动性强、结构简单操作灵活和成本较低以及独特的飞行控制方式(通过控制四只轩逸的转速实现各种姿态的飞行)等诸多优点,近些年成为无人机控制领域的研究热点而受到了越来越多的关注。但是由于四旋翼无人机的动力学模型复杂,对外界的干扰很是敏感,使得其发展与应用受到了限制。随着四旋翼无人机应用的发展,对其姿态测量系统和控制系统提出了更高的要求,同时由于该无人机系统具有耦合、欠驱动、非线性等特性,使得四旋翼无人机的研究更具挑战。
1.2 国内外相关研究情况
1.2.1 国外研究状况
目前,国际上的研究较多的基本都是尺寸较小的四旋翼无人机,一般可分为遥控航模四旋翼无人机、具有自主运动功能的四旋翼无人机。遥控航模四旋翼无人机的典型代表是美国 Draganflyer 公司的第四代产品Draganflyer X4,这是一款高性能的遥控摄像飞行器,其机体宽64.5cm长64.5cm,高 21cm,重 680g;旋翼直径 36cm,重 6g;有效载荷 250g;可持续飞行 16-20mins。通过无线遥控器可以手动控制无人机飞行的高度、航向、以及速度等。
目前,四旋翼无人机实现自主飞行控制主要体现在三个方面:基于惯性导航
的自主飞行控制、基于视觉的自主飞行控制和自主飞行器系统方案,其典型代表
分别是:瑞士洛桑联邦科技学院的 OS4、宾夕法尼亚大学的 HMX4、佐治亚理工大学的 GTMARS 和麻省理工学院的MIT。
瑞士洛桑联邦科技学院 OS4 项目的目标是设计一种可在室内和室外环境中完全自主飞行的小型四旋翼无人机。2004 年,在OS4I上分别基于多种控制算法 (例如:PID, LQ, Backstepping) 实现了无人机姿态控制。至2006年,在 OS4 I上发展而来的 OS4 II 在室内环境中实现了基于惯性导航的自主悬停控制。
宾夕法尼亚大学的 HMX4 是基于视觉的自主飞行器,其机体底部有五个彩色标记,通过地面摄像头跟踪并测量标记的位置和面积,从而获得飞行器的三个姿态角和位置。目前,在 HMX4 上己经实现了基于视觉的定位及姿态测量。之后,宾夕法尼亚大学在 HMX4 上又研发了一套基于机载和地面双摄像头的视觉定位与姿态测量系统,使测量精度进一步提高。
图1.1 宾夕法尼亚大学的HMX4 图1.2 3D自由度测试平台及OS4II
佐治亚理工大学的GTMARS是面向火星探测任务而设计的CAD无人机系统,它重 20kg,旋翼半径 0.92m,续航时间 30 mins。折叠封装的 GTMARS随着陆器登陆火星后,能自动将机构展开并能自主起飞和降落,执行探测任务,飞行速度最高可达 72km/h。此外,它还能返回到着陆器补充能量。
麻省理工学院的 UAV SHMP 研发的四旋翼无人机 MIT,其研发目的是在地面操纵多个无人机连续执行任务。MIT 使用 IMU 惯性测量单元获取机体的姿态信息,使用激光扫描阵列对周围环境进行感知和重建,并对飞行轨迹进行规划。目前该项目已经在室内实现对多目标进行连续搜索、跟踪和协同飞行等试验。
1.2.2 国内研究状况
国内对四旋翼无人机的研究起步相对较晚,技术水平与国外还有一定差距,目前市面上的产品主要是遥控航模,而对于具有自主运动功能的四旋翼无人机的研究则主要集中在一些知名的高校。国防科技大学在2004年开始进行四旋翼无人机的自主飞行控制的研究,在 06 年底基本完成原型样机设计,分别实现了基于反步法和自抗扰控制的飞行控制系统,还基于平方根无迹卡尔曼滤波对无人机进行状态估计。紧接着上海交通大学,哈尔滨工业大学,南京理工大学,中南大学等高校都开始进行相关的研究,通过对四旋翼无人机进行建模,搭建仿真平台,并研究多个控制算法来实现控制系统的设计,从而改善和提高了四旋翼无人机的控制性能。
1.3 四旋翼飞行器控制的研究目的和意义
四旋翼飞行器具有一般VTOL(Vertical Take-Off and Landing)无人机所具有的的优势,能够垂直起降而不受地面环境的影响。同时由于体积小,重量轻、隐蔽性好等特性,能够适合多平台多空间使用。四旋翼飞行器具有很强的机动性可可操作性,便于操作人员进行控制。相比传统的直升机和固定翼式飞行器,四旋翼飞行器可以飞至离目标更近的区域,便于在复杂环境下使用,可以对细小环境进行侦查。因而,在军事及民用方面都有广阔的应用前景。
到目前为止,四旋翼飞行器基础理论与实验研究已取得了较大的进展,但是要真正走向成熟与实用,还面临着诸多关键因素的挑战。飞行控制系统是四旋翼飞行器的关键,其中,飞行器的姿态控制是整个飞行控制的核心。由于四旋翼无人机是一个具有六自由度(三位置三姿态)和四个控制输入(四个旋翼转速)的欠驱动系统,具有多变量、非线性、强耦合和干扰敏感的特性。此外,控制器的性能还会受到模型准确性和传感器精度的影响。这些特点使得飞行控制系统设计尤为困难。要保证四旋翼无人机咱各种飞行环境下都具有良好的飞行状态,飞行控制算法极为重要。
目前对于四旋翼飞行器的姿态控制有多种实现算法,如PID,Backstepping反演控制、滑模控制、神经网络控制、鲁棒控制等等。非线性控制算法能够取得很好的仿真效果,实现良好的跟踪性能和控制的稳定性。但控制器实现复杂,对模型准确性有很强的的依赖,其实际效果反而不如PID控制。目前大多实际飞行控制模块中仍使用PID控制作为其核心算法。
1.4 四旋翼无人机的主要发展趋势
根据微小型四旋翼无人机发展的现状和相关高新技术的发展,它将有以下发展前景。随着相关技术的进一步的深入,预计在不久的将来小型四旋翼无人机技术会逐步走向成熟与实用。任务规划、飞行控制、无GPS导航、视觉和通信等子系统的进一步健全和完善,使其具有自主起降和全天候抗干扰稳定飞行能力。
未来的四旋翼无人机将完全能够达到美国国防预研局对MAV基本技术指标的要求。随着纳米技术和MEMS等技术的发展,四旋翼MAV必须取得理论和工程上的突破。它将是一种具有四个旋翼的可飞行的传感器芯片,是一个集成多个子系统与能源、任务与通信子系统的高度复杂MEMS系统;不但能够在空中悬停、任意方向机动飞行,还能飞临、绕过甚至是穿越目标物体。此外,它将拥有良好的隐身功能和信息传输能力。
在未来的战争中,四旋翼无人机的主要任务之一是将敌方进行电子干扰并攻击其核心目标。单个微小型飞行器的有效载荷量毕竟有限,难以有效的完成任务,而编队飞行与作战不仅可以极大的提高有效载荷量,还能够挣钱突防能力。
1.5 本文研究的主要内容以及结构安排
本课题的主要内容是四旋翼无人机位置控制和姿态控制系统的设计,主要包括数学建模、PID控制器的设计、Matlab下的Simulink仿真。具体内容如下:
第一章:绪论,介绍了无人机的研究背景、四旋翼飞行器的研究发展、国内外研究现状、研究本课题的目的和意义以及发展趋势,最后给出了本课题的内容结构安排。
第二章:四旋翼无人机的结构及飞行原理,以及方向余弦姿态结算方法。然后通过对飞行原理的分析,推导出四旋翼无人机的动力学方程,并对四旋翼无人机的仿真环境进行了简要介绍,同时对四旋翼无人机的原理、机体坐标系和惯性坐标系进行了分析,并且对四旋翼无人机的飞行位置坐标X,Y,Z和姿态控制(俯仰角、滚转角、偏航角)分别进行了动力和动力学分析,建立了四旋翼无人机位置控制和姿态控制的数学模型,并对模型进行线性化。
第三章:PID控制理论,该章节详细地阐述了PID控制理论的发展历程,应用范围,与Backstepping控制方法比较的优势以及基本原理。
第四章:PID控制器的设计,该章节首先阐述了PID控制的设计思路,接着设计了位置和姿态的PID控制的结构原理图。并利用Matlab工具下的Simulink搭建了PID控制结构图并且对其进行仿真,得出各个位置和各个姿态坐标的阶跃响应曲线,最后再对得到的仿真结果进行分析。
第五章:总结,对全文内容的总结与展望。对本论文的工作进行总结性的阐述,同时提出本论文工作中的不足之处及待改进的方向。
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🎁 私信完整代码和数据获取及论文数模仿真定制🌈
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类