✅作者简介:热爱科研的Matlab算法工程师。
🍎更多Matlab代码及仿真咨询内容点击 🔗:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
极限学习机 (ELM) 作为一种新型的单隐层前馈神经网络,以其训练速度快、泛化能力强等优点,在诸多领域展现出强大的预测能力。然而,ELM 的性能高度依赖于输入权重和隐层偏置的随机初始化,这可能会导致模型精度的不稳定性。为了克服这一缺陷,许多学者致力于研究如何优化 ELM 的参数,以提高其预测精度和稳定性。蛇群算法 (Snake Optimization Algorithm, SOA) 作为一种新兴的元启发式优化算法,凭借其良好的全局搜索能力和收敛速度,为优化 ELM 参数提供了一种有效的途径。本文将深入探讨基于蛇群算法优化极限学习机 (SO-ELM) 在多输入单输出 (Multiple Input Single Output, MISO) 预测中的应用,并结合 MATLAB 编程实现,详细阐述其流程和结果分析。
首先,我们需要明确 SO-ELM 的核心思想。传统的 ELM 算法通过随机初始化输入权重和隐层偏置,然后利用最小二乘法求解输出权重,从而构建预测模型。而 SO-ELM 则将蛇群算法引入 ELM 的参数优化过程。蛇群算法模拟蛇群的觅食行为,通过个体之间的信息交互和协同合作,逐步逼近最优解。在 SO-ELM 中,输入权重和隐层偏置被编码为蛇群算法中的个体,目标函数则设定为 ELM 模型的预测误差。通过迭代寻优,蛇群算法可以找到使预测误差最小化的输入权重和隐层偏置,从而构建一个性能优异的 ELM 模型。
MATLAB 提供了丰富的函数和工具箱,可以方便地实现 SO-ELM 算法。整个实现过程可以大致分为以下几个步骤:
-
数据预处理: 首先需要对 MISO 预测问题中的数据集进行预处理。这包括数据清洗、归一化等操作,以提高模型的训练效率和预测精度。常用的归一化方法包括最小-最大规范化和Z-score规范化等。数据预处理的质量直接影响最终模型的性能。
-
ELM 模型构建: 根据 MISO 问题的输入和输出维度,构建 ELM 模型。这包括确定隐层神经元的个数,以及选择合适的激活函数 (例如 sigmoid 函数、ReLU 函数等)。隐层神经元个数的选择对模型性能影响较大,通常需要通过实验确定最佳值。
-
蛇群算法参数设置: 设置蛇群算法的参数,例如蛇群规模、最大迭代次数、搜索步长等。这些参数的选择会影响算法的收敛速度和全局搜索能力。需要根据具体问题和数据集进行调整,以达到最佳效果。
-
SO-ELM 训练: 将 ELM 模型的输入权重和隐层偏置作为蛇群算法的优化变量,以预测误差作为目标函数,利用蛇群算法进行迭代寻优。在每次迭代中,蛇群算法根据当前蛇群的位置和目标函数值更新个体位置,逐步逼近最优解。
-
模型评估: 训练完成后,需要对 SO-ELM 模型进行评估。常用的评估指标包括均方误差 (MSE)、均方根误差 (RMSE)、平均绝对误差 (MAE) 和 R 方 (R-squared) 等。通过这些指标可以比较不同参数设置下的模型性能,并选择最佳模型。
-
预测结果分析: 利用训练好的 SO-ELM 模型对新的测试数据集进行预测,并分析预测结果的准确性和稳定性。可以通过绘制预测值与真实值之间的比较图,以及分析各种误差指标,来评估模型的预测性能。
在 MATLAB 实现中,我们可以利用 MATLAB 自带的优化函数或者编写自定义函数来实现蛇群算法。同时,也可以利用 MATLAB 的神经网络工具箱来构建和训练 ELM 模型。整个过程需要结合 MATLAB 的矩阵运算和绘图功能,才能高效地实现 SO-ELM 算法并进行结果分析。
总而言之,SO-ELM 算法结合了 ELM 的高效性和 SOA 的全局优化能力,为解决多输入单输出预测问题提供了一种有效的方法。通过 MATLAB 的实现,我们可以方便地进行实验,并根据具体问题调整算法参数,以获得最佳预测效果。未来的研究可以探索更先进的元启发式算法来优化 ELM 参数,或者结合深度学习技术,进一步提升 SO-ELM 的预测精度和泛化能力,并将其应用于更复杂的实际问题中。 此外,对不同激活函数、隐含层节点数等参数的敏感性分析也值得进一步研究,以更好地理解 SO-ELM 的特性并提升其应用效果。
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类