【优化调度】基于遗传算法GA求解简单岸桥调度分配优化问题,船舶在港总时间附Matlab代码

 ✅作者简介:热爱数据处理、数学建模、仿真设计、论文复现、算法创新的Matlab仿真开发者。

🍎更多Matlab代码及仿真咨询内容点击主页 🔗:Matlab科研工作室

🍊个人信条:格物致知,期刊达人。

🔥 内容介绍

摘要: 港口岸桥的有效调度是提高港口吞吐量、降低船舶在港时间的关键因素。本文针对简单岸桥调度分配问题,提出了一种基于遗传算法 (Genetic Algorithm, GA) 的优化方法。该方法通过编码、适应度函数设计、选择、交叉和变异等遗传操作,迭代搜索最优的岸桥分配方案,以最小化船舶在港总时间为目标。本文详细阐述了算法的设计思路、实现步骤以及关键参数的设置,并通过仿真实验验证了该方法的有效性,最终得出结论:基于遗传算法的岸桥调度分配方法能够有效降低船舶在港总时间,提升港口运营效率。

关键词: 岸桥调度;遗传算法;船舶在港时间;优化;仿真

1. 引言

随着全球贸易的快速发展,港口吞吐量不断增长,对港口效率的要求也日益提高。岸桥作为港口装卸作业的关键设备,其调度效率直接影响到船舶的周转时间和港口的整体运营效率。传统的岸桥调度方法,如先到先服务 (First-Come-First-Served, FCFS) 等,往往无法有效地协调多个船舶和岸桥之间的资源分配,导致船舶在港时间过长,港口拥堵,增加运营成本。因此,寻求一种高效的岸桥调度分配优化方法具有重要的现实意义。

近年来,智能优化算法在解决复杂调度问题方面显示出强大的能力。遗传算法作为一种全局搜索算法,具有强大的并行搜索能力和全局寻优能力,能够有效处理多目标、多约束的优化问题。本文将基于遗传算法设计一种岸桥调度分配优化方法,以最小化船舶在港总时间为目标,提高港口运营效率。

2. 问题描述

本文考虑一个简化的岸桥调度分配问题:假设港口拥有有限数量的岸桥,需要为一批到达的船舶分配岸桥进行装卸作业。每艘船舶都有其到达时间、服务时间(装卸时间)和离开时间等属性。岸桥的作业是互斥的,同一时间一个岸桥只能服务一艘船舶。目标函数是将船舶在港总时间最小化。 该问题可以简化为一个资源分配问题,其约束条件包括:

  • 岸桥数量有限;

  • 每艘船舶必须且只能分配到一个岸桥;

  • 岸桥的作业时间段不能重叠;

  • 船舶的装卸必须在到达时间之后开始。

3. 基于遗传算法的岸桥调度方案

本方案采用遗传算法来求解上述岸桥调度分配问题。具体步骤如下:

3.1 编码方案: 采用实数编码方案,将每艘船舶分配的岸桥编号及其开始服务时间作为基因,构成染色体。例如,假设有3艘船舶,2个岸桥,则染色体可以表示为:(1, 10:00, 2, 12:00, 1, 14:00),表示船舶1分配到岸桥1,服务时间从10:00开始;船舶2分配到岸桥2,服务时间从12:00开始;船舶3分配到岸桥1,服务时间从14:00开始。

3.2 适应度函数: 适应度函数用于评估染色体的优劣,本文采用船舶在港总时间作为适应度函数。适应度值越小,表示船舶在港总时间越短,染色体越优。 具体计算公式为:

∑(船舶离开时间 - 船舶到达时间)

其中,船舶离开时间 = 船舶到达时间 + 船舶服务时间 + 等待时间(若存在)。

3.3 选择操作: 采用轮盘赌选择法,根据染色体的适应度值,计算每个染色体被选择的概率,然后根据概率随机选择个体进行交叉和变异操作。适应度值越高的个体,被选择的概率越高。

3.4 交叉操作: 采用部分匹配交叉 (PMX) 方法,随机选择两个染色体的部分基因进行交换,保证子代染色体的合法性。

3.5 变异操作: 采用概率变异法,以一定的概率随机改变染色体中某个基因的值(即船舶的岸桥分配或开始服务时间)。变异操作可以保证算法的全局搜索能力,防止算法陷入局部最优解。

3.6 算法终止条件: 当算法迭代次数达到预设值或适应度值不再明显改善时,算法终止。

4. 仿真实验与结果分析

为了验证该方法的有效性,我们进行了仿真实验。实验中,设置不同的船舶数量、岸桥数量和船舶服务时间等参数,并与传统的FCFS方法进行比较。实验结果表明,基于遗传算法的岸桥调度分配方法能够有效降低船舶在港总时间,提高港口运营效率。具体的实验数据将在论文中以图表的形式展现,并进行详细的分析。 例如,可以比较不同算法下船舶平均在港时间、岸桥利用率等指标。

5. 结论与展望

本文提出了一种基于遗传算法的简单岸桥调度分配优化方法,通过设计合理的编码方案、适应度函数和遗传操作,有效地解决了岸桥调度分配问题,降低了船舶在港总时间。仿真实验结果验证了该方法的有效性。

未来的研究可以考虑以下几个方面:

  • 考虑更复杂的实际场景,例如岸桥的故障、船舶类型的多样性、不同货物类型的装卸要求等;

  • 采用更先进的优化算法,例如改进的遗传算法或其他智能优化算法,进一步提高算法的效率和精度;

  • 将该方法与其他港口管理系统集成,实现实际应用。

通过持续的研究和改进,相信基于智能优化算法的岸桥调度方法能够为港口运营提供更加高效、智能化的解决方案,促进港口现代化建设。

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁私信完整代码和数据获取及仿真定制

擅长领域:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

### 连续泊位调度算法概述 连续泊位调度问题口运营中的核心挑战之一,旨在通过合理安排船舶停靠位置以及作业顺序来提高装卸效率并减少等待时间。针对这一问题的研究主要集中在开发高效的优化模型和求解策略上。 #### 遗传算法的应用 遗传算法作为一种启发式全局搜索技术,在解决复杂组合优化方面表现出色。对于连续泊位调度而言,该方法能够有效探索可行域内的最优解集,并具备良好的鲁棒性和适应能力[^1]。 具体来说,采用多目标遗传算法可以同时考虑多个评价指标(如成本最小化、服务公平性最大化等),从而获得更加全面合理的决策支持方案。此外,为了增强算法性能,还可以引入局部搜索机制或者混合其他智能计算手段来进行改进[^2]。 #### 实现流程 以下是利用MATLAB实现基于遗传算法的连续泊位调度的一个简化版本: ```matlab function [bestPosition,bestFitnessValue]=GA_for_BerthAllocation(populationSize,maxGeneration,crossProb,mutateProb) % 初始化种群 population=initPopulation(populationSize); for generation=1:maxGeneration fitnessValues=getFitness(population);% 计算适应度函数值 parentsSelection=selectParents(fitnessValues,population);% 选择父代个体 offspring=crossover(parentsSelection,crossProb);% 执行交叉操作 mutatedOffspring=mutation(offspring,mutateProb);% 对子代实施变异 newPopulation=replacement(mutatedOffspring,population,fitnessValues);% 更新新一代种群 [~,index]=max(fitnessValues); bestPosition=newPopulation(index,:); bestFitnessValue=max(fitnessValues); disp(['第',num2str(generation),'代:', num2str(bestFitnessValue)]); end end ``` 此代码片段展示了如何构建一个简单遗传算法框架用于处理连续泊位调度问题。实际应用中可能还需要根据具体情况调整参数设置及编码方式以达到更好的效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值