✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知,求助可私信。
🔥 内容介绍
摘要: 本文详细阐述了二进制相移键控(BPSK)系统的MATLAB仿真建模及性能评估过程。通过构建发射机和接收机模型,模拟了BPSK信号在加性高斯白噪声(AWGN)信道下的传输,并对不同信噪比下的误码率(BER)进行了分析和比较。结果表明,仿真结果与理论BER曲线相符,验证了模型的有效性,并为实际BPSK系统的设计和优化提供了参考。
关键词: 二进制相移键控(BPSK),误码率(BER),信噪比(SNR),MATLAB仿真,AWGN信道
1. 引言
二进制相移键控(Binary Phase Shift Keying, BPSK)是最简单的数字相位调制技术,它利用载波信号的相位变化来表示二进制信息“0”和“1”。由于其实现简单、性能可靠,BPSK广泛应用于各种通信系统中。本文将对BPSK系统进行建模和仿真,并通过分析不同信噪比(Signal-to-Noise Ratio, SNR)下的误码率(Bit Error Rate, BER)来评估其性能。
2. BPSK系统模型
BPSK系统主要由发射机和接收机两部分组成。
2.1 发射机:
发射机首先将输入的二进制比特流映射到载波信号的两个相位上。通常,“0”比特对应于载波相位为0°,而“1”比特对应于载波相位为180°。这可以通过将比特流转换为+1和-1的符号序列,再与载波余弦信号相乘来实现。其数学表达式为:
s(t) = A d(t) cos(2πfct)
其中,A为载波幅度,d(t)为+1或-1的符号序列,fc为载波频率。
2.2 接收机:
接收机接收到的信号包含有用信号和噪声。为了恢复原始比特流,接收机首先将接收信号与本地载波信号相乘,然后通过低通滤波器(积分器)去除高频成分,最后通过门限检测器将滤波器输出转换为二进制比特流。
r(t) = s(t) + n(t)
其中,r(t)为接收信号,n(t)为加性高斯白噪声。
3. MATLAB仿真模型
本文采用MATLAB对BPSK系统进行仿真,主要包括以下两个模型:
3.1 模型1: BPSK收发系统仿真
该模型模拟了完整的BPSK收发系统,包括随机比特序列生成、BPSK调制、AWGN信道建模、BPSK解调以及误比特计数。通过观察输入和输出波形,可以直观地理解BPSK系统的运作过程。
3.2 模型2: BPSK系统BER与SNR曲线仿真
该模型主要用于评估不同信噪比下BPSK系统的误码率。模型生成不同长度的随机比特序列,并对不同SNR值下的BER进行计算和绘制。由于本评估主要关注信道影响(由AWGN建模),因此没有模拟调制信号到较高频率,再回到基带的转换过程,从而加快了仿真速度。
4. 仿真结果与分析
基于上述两个模型,进行了大量的仿真实验,并得到了以下结果:
(1) 模型1的结果: 仿真结果生成了输入比特序列和输出比特序列的波形图,以及经过AWGN信道后的接收信号波形图,直观地展现了BPSK调制、传输和解调的过程。 通过对比输入和输出波形,可以观察到噪声对信号的影响,以及不同信噪比下解调性能的差异。
(2) 模型2的结果: 仿真结果生成了BER与SNR的关系曲线图。结果表明,随着SNR的增加,BER呈指数下降趋势。这与理论分析结果相符:在AWGN信道下,BPSK系统的理论BER为:
BER = 0.5 erfc(√(SNR))
其中,erfc()为互补误差函数。 仿真结果中不同比特数的模拟(例如,5000, 10000, 50000等)也验证了在较高的SNR下,随着比特数的增加,BER的估计更加准确。 低SNR下的BER值略有波动,这主要是由于随机噪声的影响。
5. 结论
本文通过MATLAB仿真,对BPSK系统进行了建模和性能评估。仿真结果验证了理论分析,证明了所建立的模型的有效性和准确性。 模型2的BER与SNR曲线图清晰地展示了BPSK系统的性能受信噪比的影响,为系统设计和参数选择提供了重要的参考依据。 未来工作可以考虑更复杂的信道模型,例如瑞利衰落信道,以及更高级的调制技术,以进一步完善BPSK系统的研究。
📣 部分代码
subplot(4,1,1); stem(sig1);
xlabel('Bits'); ylabel('Logical values'); title('Input data bits');
axis([0, length(sig1), -0.5, 1.5]);
% Plot 2
subplot(4,1,2); plot(time, sig2, 'LineWidth',2); grid on;
xlabel('Time'); ylabel('Amplitude'); title('Coded signal');
maxTime=max(time);
maxAmp=max(sig2);
minAmp=min(sig2);
axis([0,maxTime,minAmp-0.5,maxAmp+0.5]);
% Plot 3
subplot(4,1,3); plot(time, sig3, 'LineWidth',2.5); grid on;
xlabel('Time'); ylabel('Amplitude'); title('Modulated signal');
maxTime=max(time);
maxAmp=max(sig3);
minAmp=min(sig3);
axis([0,maxTime,minAmp-0.5,maxAmp+0.5]);
% Plot 4
subplot(4,1,4); plot(time, sig4, 'LineWidth',2); grid on;
xlabel('Time'); ylabel('Amplitude'); title('White Gaussian noise');
maxTime=max(time);
maxAmp=max(sig4);
minAmp=min(sig4);
axis([0,maxTime,minAmp-0.5,maxAmp+0.5]);
elseif(contains(sel_fig, 'Output Signals'))
figure('Name',sel_fig,'NumberTitle','off');
% Plot 1
subplot(4,1,1); plot(time, sig1, 'LineWidth',2); grid on;
xlabel('Time'); ylabel('Amplitude'); title('Receiver RX');
maxTime=max(time);
maxAmp=max(sig1);
minAmp=min(sig1);
axis([0,maxTime,minAmp-1,maxAmp+1]);
% Plot 2
subplot(4,1,2); plot(time, sig2, 'LineWidth',2); grid on;
xlabel('Time'); ylabel('Amplitude'); title('RX F.Multiplier output');
maxTime=max(time);
maxAmp=max(sig2);
minAmp=min(sig2);
axis([0,maxTime,minAmp-1,maxAmp+1]);
% Plot 3
subplot(4,1,3); stem(sig3, 'MarkerFaceColor',[0.4,0.4,1]);
grid on; xlabel('Bits'); ylabel('Amplitude'); title('Integrator output');
minAmp=min(sig3);
maxAmp=max(sig3);
axis([0, length(sig3), minAmp*1.5, maxAmp*1.5]);
% Plot 4
subplot(4,1,4); stem(sig4);
xlabel('Bits'); ylabel('Logical values'); title('Received data bits');
axis([0, length(sig4), -0.5, 1.5]);
end
end
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🎁 私信完整代码和数据获取及论文数模仿真定制
擅长领域:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇